
AWS
SIMPLE STORAGE SERVICE

OR S3 FOR NORMAL PEOPLE
BY ALEXANDER ZOTOV

WHAT IS S3?

• Object storage
• Almost unlimited amount of data, accessible from anywhere
• 99.999999999% durability (that’s eleven nines!)
• Cheapest way to store data on AWS
• Can even host static websites
• Supports BitTorrent, too
• Integrates with many AWS services

COMMON USE CASES

• Backup and recovery
• Data archiving
• Data lakes
• Hybrid cloud storage
• Cloud-native application data

BUCKET – CONTAINER RESOURCE

• Logical resource, similar to directory
• Region-specific, but has globally unique name
• Has its own set of access policies and ACLs
• Has multiple bucket-wide options:

– Versioning
– Lifecycle management
– Logging
– Notifications
– Cross-region replication
– And many more

OBJECT – KEY-VALUE RESOURCE

• Object is a key-value pair: key is file name, value is the content
• Can be versioned
• Metadata is a set of key-value pairs that store information about an object
• Has subresources, such as torrent and ACL
• Each object has a storage class associated with it

STORAGE CLASSES

• Standard (STANDARD & RRS) – default storage class
– STANDARD – millisecond access times, full durability/availability
– RRS – reduced redundancy storage – is meaningless now, don’t use it

• Infrequent access (STANDARD_IA & ONEZONE_IA) – for infrequently accessed files
– STANDARD_IA: millisecond access times, cheaper storage, expensive requests
– ONEZONE_IA: like standard, but less available/resilient, so its somewhat cheaper
– Suitable for files over 128KB that you plan to store for at least 30 days

• Glacier – for archiving data
– Not available in real time! You need to restore objects first
– Very cheap storage, very expensive requests

STORAGE CLASSES – IN NUMBERS

Storage class Durability Availability Comments
STANDARD 99.999999999% 99.99%
RRS 99.99% 99.99% Useless!
STANDARD_IA 99.999999999% 99.9%
ONEZONE_IA 99.999999999% 99.5% Single AZ
GLACIER 99.999999999% 99.99% Need to restore first

VERSIONING

• Off by default
• Useful to prevent unintended deletions or overwrites
• Once versioning is enabled, you cannot disable it (you can still suspend it)
• Each object version is stored separately (takes more space)
• GET request returns the latest version by default – you can specify version id to get specific

version
• DELETE request does not delete all versions, it just puts a delete marker as a current version.

You can still permanently delete specific versions of an object

ACL – ACCESS CONTROL LISTS

• A resource-based access policy
• Applies both to buckets and objects, each has an ACL attached as a subresource
• Works on account / group level
• Can be used to grant read/write permissions to other accounts
• Limitations:

– Cannot be used to grant permissions to IAM users

– No conditional permissions

– No deny rules

ACL - GRANTEE

• A Grantee is an entity that receives permissions
• A Grantee could be:

– An AWS account (identified by a Canonical User Id)

– A predefined group (represented by a URL):
• Authenticated Users (http://acs.amazonaws.com/groups/global/AuthenticatedUsers)

• All Users (http://acs.amazonaws.com/groups/global/AllUsers)

• Log Delivery (http://acs.amazonaws.com/groups/s3/LogDelivery)

ACL - PERMISSION

• Permissions describe which actions a Grantee is allowed to perform on a resource
• You can grant following permissions:

Permission When granted on a bucket When granted on an object
READ Allows to list objects in the bucket Allows to read object data and metadata
WRITE Allows to create, overwrite, delete

any object in the bucket
Not applicable

READ_ACP Allows to read bucket ACL Allows to read object ACL
WRITE_ACP Allows to write ACL for the

bucket
Allows to write ACL for the object

FULL_CONTROL Same as all of the above Same as all of the above

ACL – CANNED ACL

Canned ACL Applies to Permissions added to ACL
private Bucket and object Owner: FULL_CONTROL (default)
public-read Bucket and object Owner: FULL_CONTROL, AllUsers: READ
public-read-write Bucket and object Owner: FULL_CONTROL, AllUsers: READ, WRITE
aws-exec-read Bucket and object Owner: FULL_CONTROL, EC2: READ access to GET an

AMI from S3
authenticated-read Bucket and object Owner: FULL_CONTROL, AuthenticatedUsers: READ
bucket-owner-read Object Object owner: FULL_CONTROL, bucket owner: READ

Ignored during bucket creation
bucket-owner-full-control Object Object owner, bucket owner: FULL_CONTROL

Ignored during bucket creation
log-delivery-write Bucket LogDelivery: WRITE, READ_ACP

POLICIES – POLICY LANGUAGE

• JSON-based documents
• User policies (IAM) and Bucket policies (S3)
• Policies consist of following sections:

– Resources: buckets and objects in S3, identified by ARN

– Actions: for each resource you can define a set of operations that will be allowed or denied

– Effect: allow or deny

– Principal: account, user, service, or other entity affected by the policy

– Condition (optional): lets you specify conditions for when your policy is in effect

POLICIES – AN EXAMPLE
{

"Version": "2012-10-17",
"Id": "ExamplePolicy01",
"Statement": [{

"Sid": "ExampleStatement01",
"Effect": "Allow",
"Principal": {

"AWS": "arn:aws:iam::Account-ID:user/Dave"
},
"Action": [

"s3:GetObject",
"s3:GetBucketLocation",
"s3:ListBucket"

],
"Resource": [

"arn:aws:s3:::examplebucket/*",
"arn:aws:s3:::examplebucket"

]
}]

}

POLICIES – SPECIFYING RESOURCES

• Resources are specified by ARN
• Arn format: arn:partition:service:region:namespace:relative-id

– Partition : commonly just “aws”, “aws-cn” in China
– Service: “s3” in our case
– Region: not needed for s3
– Namespace: not needed for s3
– Relative-id: either bucket name or bucket-name/object-key.

• You can use wildcards (* and ?), but they cannot span segments
• You can also use policy variables, such as ${aws:username} (requires version 2012-10-17)

POLICIES – SPECIFYING PRINCIPALS

• Can be an account, user, service, or other entity
• To grant permissions to an account:

– "Principal":{"AWS":"arn:aws:iam::accountid:root"}
– "Principal":{"CanonicalUser":“canonical_user_id“}

• To grant permissions to an user:
– "Principal":{"AWS":"arn:aws:iam::accountid:user/username"}

• To grant permissions to everyone:
– "Principal":"*“
– "Principal":{"AWS":"*"}

POLICIES – SPECIFYING PERMISSION

• Permissions are keywords that map to S3 operations (GET, PUT, DELETE, etc).
• Format: s3:<Action><Resource><Property>
• Common Actions are: Get, Put/Create, Delete, Abort, Restore, List
• Common Resources are: Object, Bucket, MultipartUpload,
• Common Properties: Acl, Version, Tagging, Parts
• Wildcards are allowed
• Examples:

– s3:ListBucket
– s3:List*
– s3:GetBucketAcl
– s3:DeleteObjectVersion

POLICIES – SPECIFYING CONDITIONS

• Access policies allow you to specify conditions when policy takes effect
• Use Boolean operators and special expressions to match your condition against values in the

request
• https://docs.aws.amazon.com/AmazonS3/latest/dev/amazon-s3-policy-keys.html

POLICIES – USER POLICIES

• You can use IAM user policies to control access to S3 resources
• ACLs, bucket policies, and user policies are all affect S3 resources
• Will be covered in IAM section

