

дисциплина «ТЕОРИЯ И ПРАКТИКА ИНЖЕНЕРНОГО ИССЛЕДОВАНИЯ»

Материалы практического занятия 2.4

МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

Пример 1.

В результате проведенного эксперимента была получена следующая таблица (см. след. слайд). Значения экспериментально полученных значений нанесены на график (см. след. слайд).

Расчетная таблица вычисления коэффициентов регрессии

Таблица 2.1

Номер опыта	X	у			
1	- 4	1,5			
2	- 3	1,2			
3	- 2	2,2			
4	- 1	2,2			
5	0	2			
6	1	3			
7	2	3,6			
8	3	3,1			
9	4	4			
Σ	0	22,7			

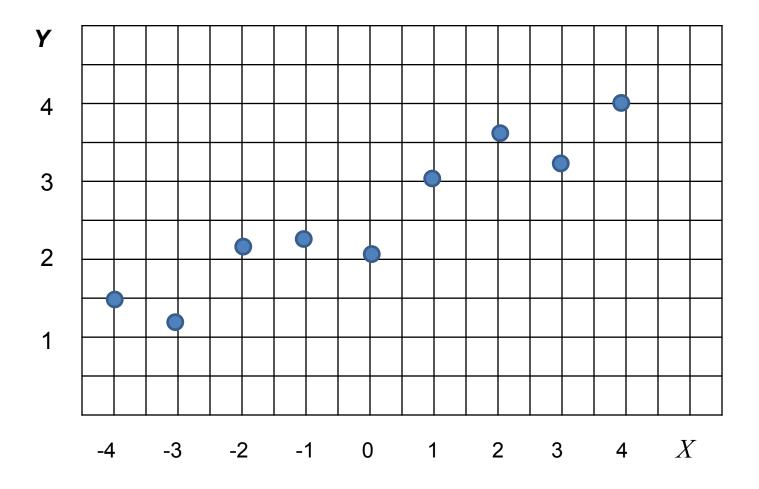


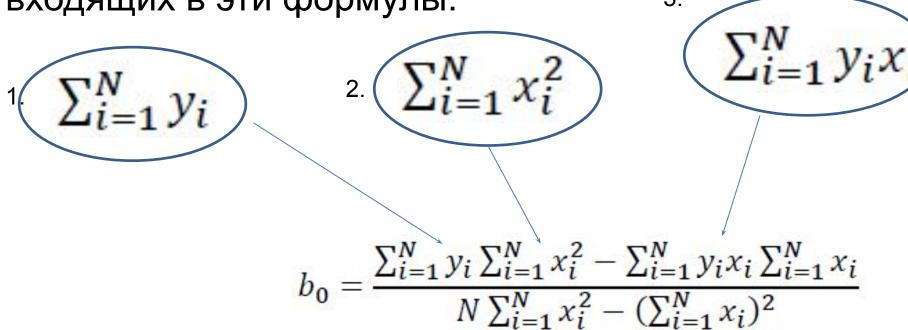
Рисунок 2.1 – Результаты эксперимента

На рис.2.1 точками показаны значения y в зависимости от x, полученные в результате эксперимента.

Так как явно прослеживается линейная зависимость, полагаем, что уравнение этой зависимости имеет вид:

$$y = b_0 + b_1 \cdot x$$
 (2.1)

Здесь неизвестны коэффициенты b_0 и b_1 . Для их определения воспользуемся методом наименьших квадратов.


В соответствии с методикой метода наименьших квадратов коэффициенты \boldsymbol{b}_0 и \boldsymbol{b}_1 вычисляются по формулам:

$$b_{o} = \frac{\sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} y_{i} \cdot x_{i} \cdot \sum_{i=1}^{N} x_{i}}{N \cdot \sum_{i=1}^{N} x^{2}_{i} - (\sum_{i=1}^{N} x_{i})^{2}}$$
(2.2)

$$b_1 = \frac{N \cdot \sum_{i=1}^{N} y_i \cdot x_i - \sum_{i=1}^{N} y_i \cdot \sum_{i=1}^{N} x_i}{N \cdot \sum_{i=1}^{N} x_{i}^{2} - (\sum_{i=1}^{N} x_{i})^{2}}$$

В соответствии с формулами 2.2 нам необходимо провести вычисления слагаемых, входящих в эти формулы:

3.

и т.д.

Результаты вычислений заносим в таблицу 2.1 и находим суммы столбцов:

Расчетная таблица вычисления коэффициентов регрессии Таблица 2.1

Номер опыта	X	У	\mathbf{x}^2	у.х	y ²
1	- 4	1,5	16	-6	2,25
2	- 3	1,2	9	-3,3	1,21
3	- 2	2,2	4	-4,4	4,84
4	- 1	2,2	1	-2,2	4,84
5	0	2	0	0	4
6	1	3	1	3	9
7	2	3,6	4	7,2	12,96
8	3	3,1	9	9,3	9,61
9	4	4	16	16	16
$oldsymbol{\Sigma}$	0	22,7	<i>60</i>	19,6	64,71

Тогда:

$$b_{o} = \frac{\sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} y_{i} \cdot x_{i} \cdot \sum_{i=1}^{N} x_{i}}{N \cdot \sum_{i=1}^{N} x^{2}_{i} - (\sum_{i=1}^{N} x_{i})^{2}} =$$

$$\frac{22,7 \cdot 60 - 19,6 \cdot 0}{9 \cdot 60 - 0} = 2,52$$

$$b_0 = 2,52$$

Тогда:

$$b_1 = \frac{N \cdot \sum_{i=1}^{N} y_i \cdot x_i - \sum_{i=1}^{N} y_i \cdot \sum_{i=1}^{N} x_i}{N \cdot \sum_{i=1}^{N} x_{i}^{2} - (\sum_{i=1}^{N} x_{i})^{2}} =$$

$$= \frac{9 \cdot 19,6 - 22,7 \cdot 0}{9 \cdot 60 - 0} = 0,33$$

$$b_1 = 0.33$$

Таким образом, уравнение (2.1) запишется в виде:

$$y = 2,52 + 0,33 \cdot x$$
 (2.3)

На рис.2.2 (см. след. слайд) построен график искомого уравнения, построенный по формуле 2.3.

МНК гарантирует, что сумма всех отклонений между экспериментальными данными (точками) и построенной зависимостью (прямой) минимальна.

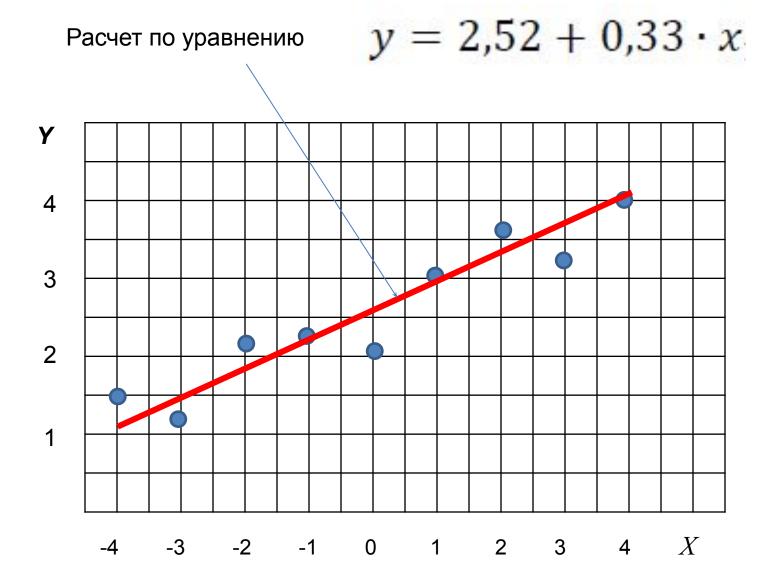


Рисунок 2.2 – Результаты эксперимента (точки) и расчета (прямая)