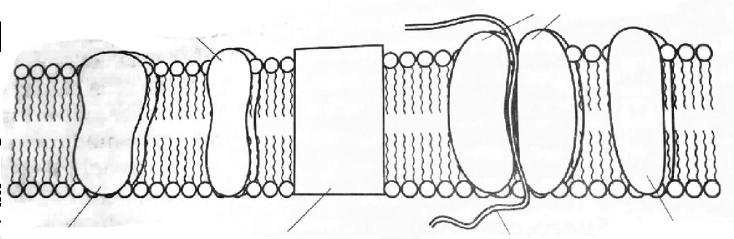
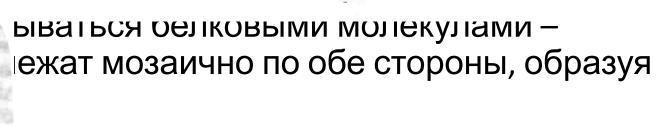
Подготовка к муниципальному этапу ВСОШ по биологии

Занятие 1.

Состав и строение клеток. Прокариоты и эукариоты. Деление клеток.

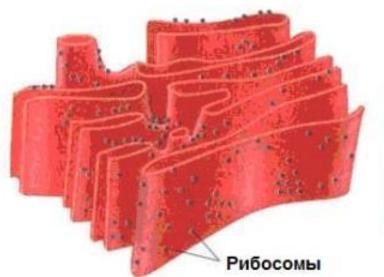

Мембранные органиоиды

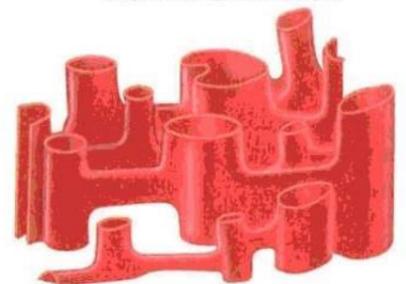

Наружная клеточная мембрана (=плазмалемма) — Пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами — порами. Кроме того, белки лежат мозаично по обе стороны, образуя ферментные системы.

Изолирует клетку от внешней среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку. Обеспечивает обмен веществ и энергией с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе. Регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности

Строение клет

Мембранные органиог <u>Наружная клеточна</u> ∞

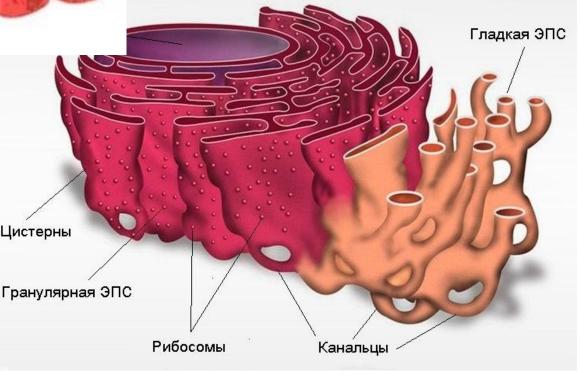

процесс поступления веществ в веществ и энергеии с внешней средой, еток в ткани, участвует в пиноцитозе и ый баланс клетки и выводит из нее этельности


Мембранные органиоиды

<u>Эндоплазматическая сеть = Эндоплазматический</u> <u>реть кульм (ЭПС, ЭПР)</u> — Система мембран, образующих трубочки, канальцы, цистерны, пузырьки. Строение мембран универсальное (как и наружной), вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембранной. Гранулярная ЭПС несет рибосомы. Гладкая — лишена их.

Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четверичную структуры, синтезируются жиры, транспортируется АТФ.

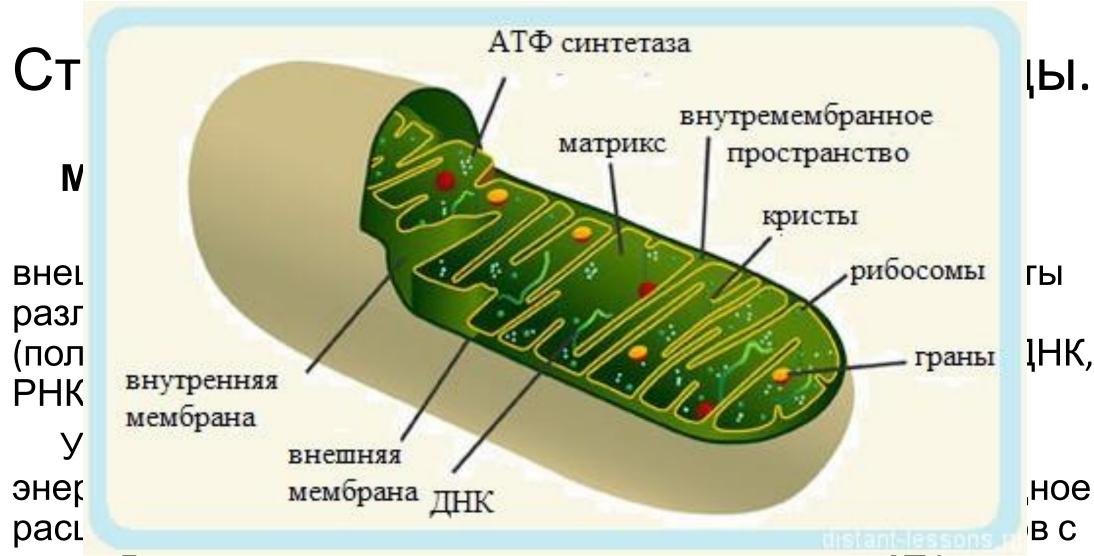
Шероховатая эндоплазматическая сеть Гладкая эндоплазматическая сеть


ые органоиды.

<u>тлазматический</u>

н, образующих роение мембран

клеточной мембранной. Гранулярна Гладкая – лишена их.

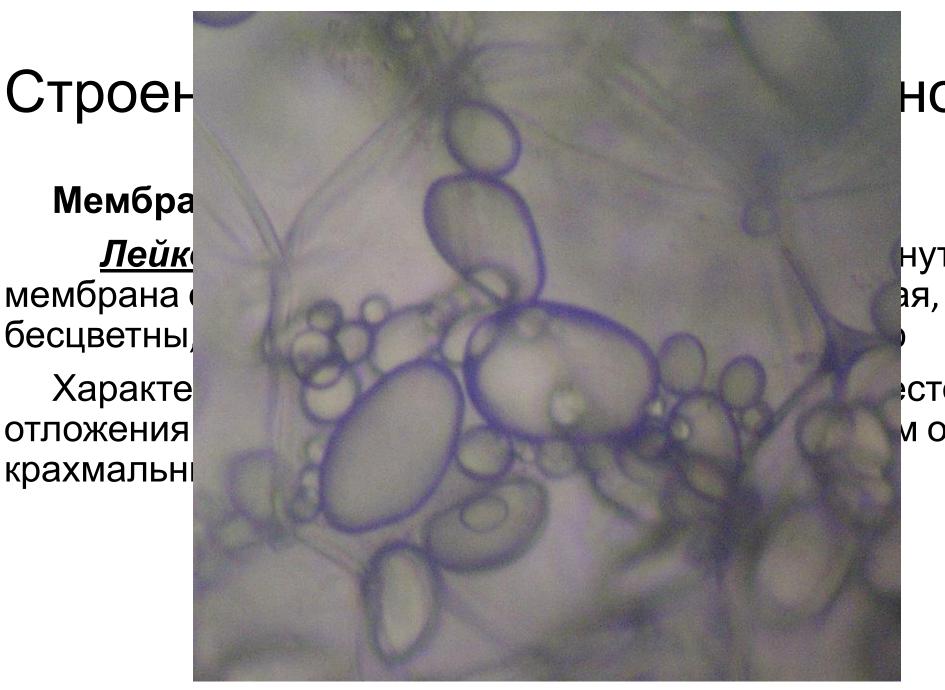

Обеспечивает транспорт веществ к соседними клетками. Делит клетку одновременно происходят различні химические реакции. Гранулярная С цистерны В каналах ЭПС молекулы белка при третичную и четверичную структурь гранулярная эпс транспортируется АТФ.

Мембранные органеллы

Митохондрии— имеют двумембранное строение, внешняя мембрана— гладкая. Внутренняя образует выросты различной формы— кристы. В матриксе митохондрий (полужидком веществе) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением

Универсальная органелла, являющаяся дыхательным и энергетическим центром. В матриксе происходит кислородное расщепление органических веществ с помощью ферментов с высвобождением энергии, которая идет на синтез АТФ на кристах.

высвобождением энергии, которая идет на синтез АТФ на кристах.


Мембранные органеллы

Лейкопласты – двухмембранное строение. Внутренняя мембрана образует два-три выроста. Форма округлая, бесцветны, как и все пластиды, способны к делению

Характерны для растительных клеток. Служат местом отложения запасных питательных веществ. Главным образом, крахмальных зерен. Образуются из пропластид

Строен

<u>Лейк</u> мембрана бесцветны Характе отложения

ноиды.

нутренняя

CTOM и образом,

Мембранные органеллы

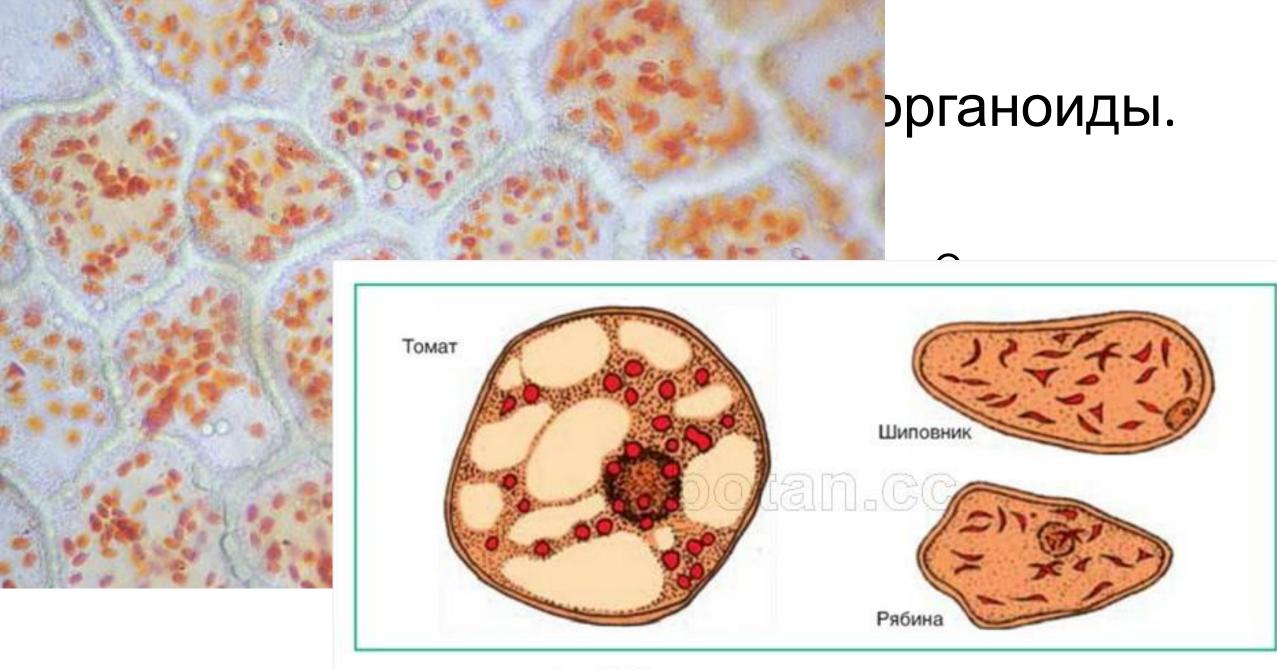
Хлоропласт – двухмембранное строение. Наружная мембрана гладкая, внутренняя – образует систему двухслойных пластин – тилакоидов стромы и тилакоидов гран. В мембранных тилакоидах гран между слоями молекул белков и липидов сосредоточены пигменты – хлорофилл и каротиноиды. В белковолипидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропласта чечевицеобразная. Окраска зеленая.

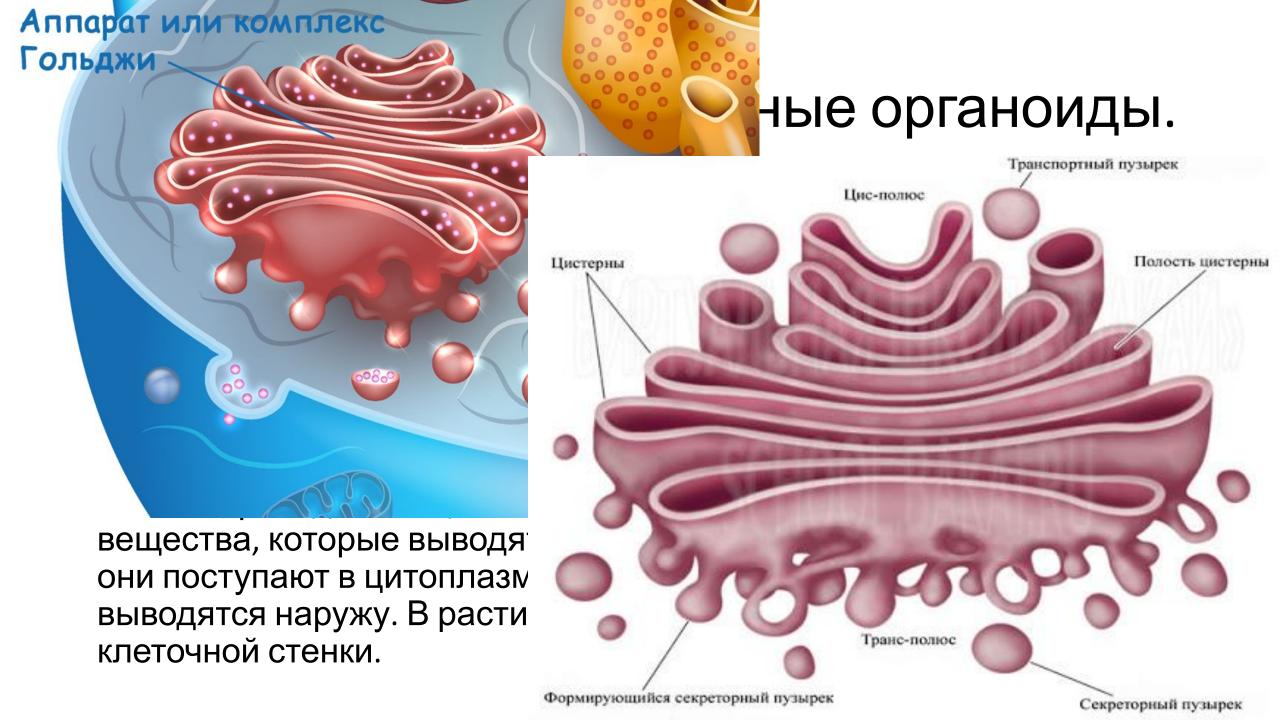
Характерны для растительных клеток, органеллы фотосинтеза, способны создавать из неорганических веществ при наличии световой энергии и пигмента хлорофилла органические вещества (углеводы) и свободный кислород. Синтез собственных белков. Могут образовываться из пропластид или лейкопластов. Осенью преобраютя в хромопласты (красные и оранжевые пластиды). Способны к делению.

Мембранные органеллы

Хромопласт – двухмембранное строение. Окраска желтая, красная, оранжевая.

Характерны для растительных клеток, придают лепесткам окраску, привлекательную для насекомых-опылителей. В осенних листьях и зрелых плодах, отделяющихся от растений, содержатся кристаллические каратиноиды, конечные продукты обмена.




Рис. 48. Хромопласты в клетках мякоти зрелых плодов

Мембранные органеллы

Аппарат Гольджи (диктиосома) – одномембранная.

Состоит из стопочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеют два полюса – строительный и секреторный.

В общей системе мембран любых клеток – наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. Одни – используются, другие – выводятся наружу. В растительной клетке участвует в построении клеточной стенки.

Мембранные органеллы

<u>Лизосомы</u> – одномембранные, круглые. Их число зависит от жизнедеятельности клетки и ее физиологического состояния. В лизосомах находятся лизирующие (растворяющие) ферменты, синтезированные на рибосомах. Обособляются от диктиосом в виде пузырьков.

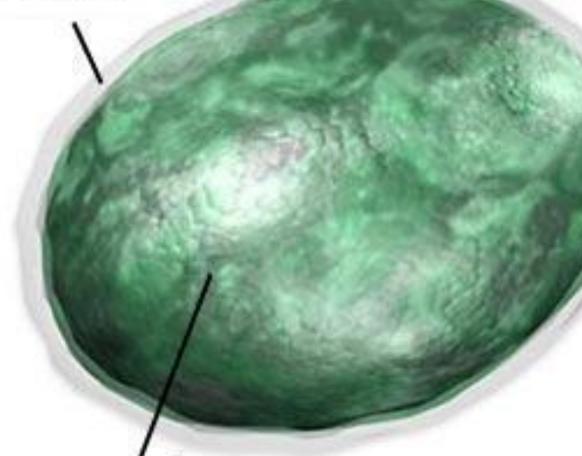
Переваривание пищи, попавшей в животную клетку при фагоцитозе. Защитная функция. В клетках любых организмов существует автолиз (саморастворение органелл). Особенно, в условиях пищевого или кислородного голодания. У растений органеллы растворяются при образовании пробковой ткани, сосудов древесины, волокон.

Структура Лизосомы

Строе однослойная мембрана

Мембра

Лизс


жизнедеят лизосомах синтезиров виде пузык

Перева фагоцитоз существуе условиях п органеллы внутренние ферменты сосудов др

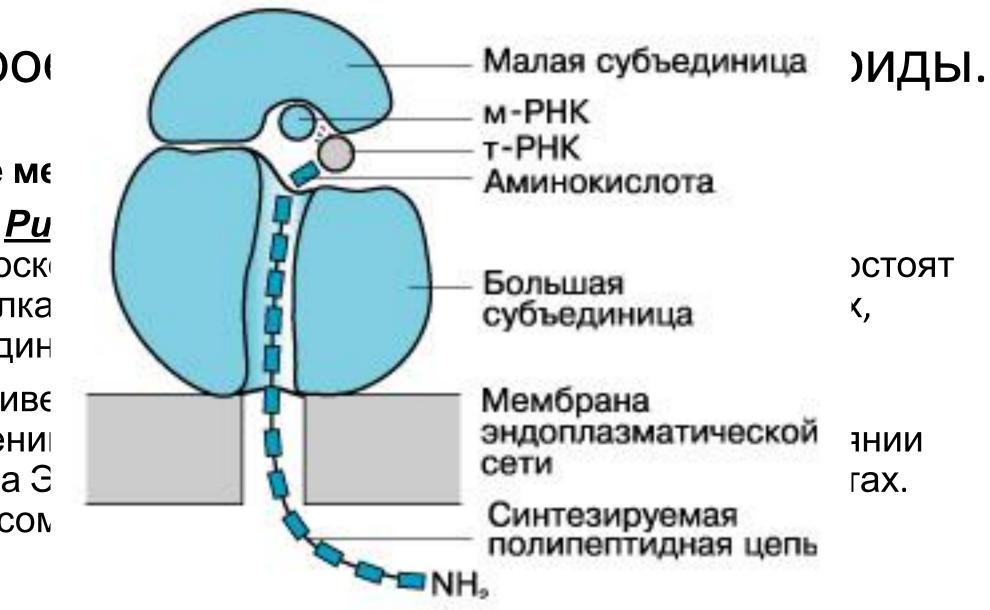
рганоиды.

исло зависит от юстояния. В ферменты, циктиосом в

тку при рганизмов обенно, в растений ой ткани,

Не мембранные органеллы

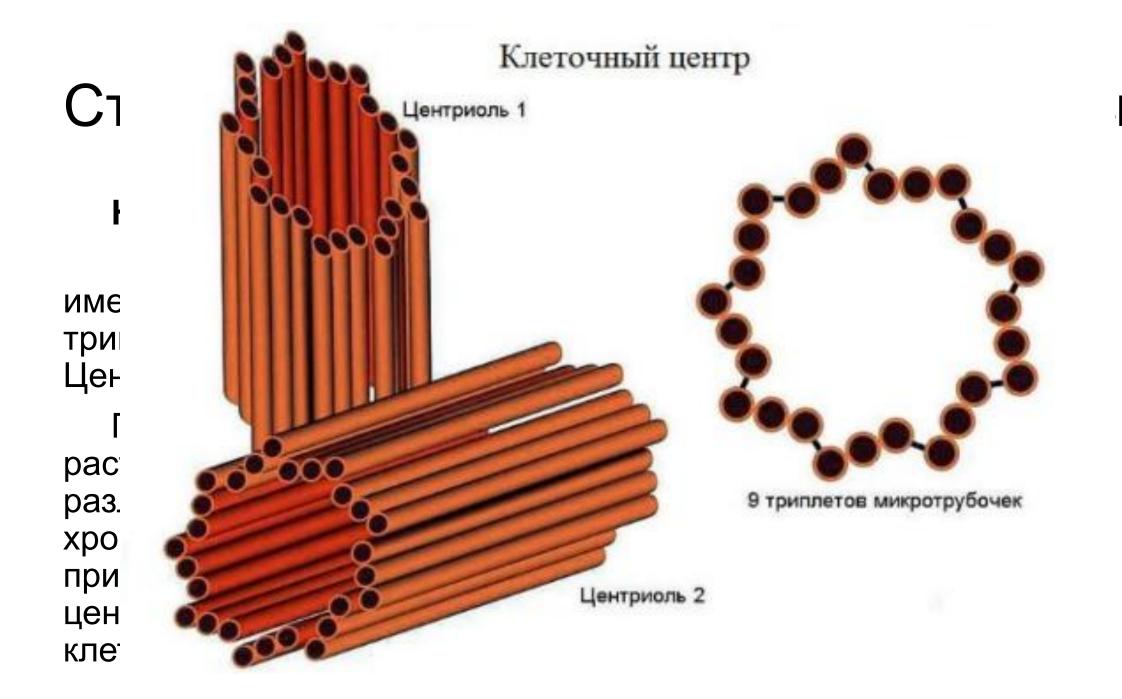
Рибосома – Округлой или грибовидной формы в микроскоп, состоящие из двух частей – субъединиц. Состоят из белка и рРНК. Субъедеиницы образуются в ядрышках, объединяются вокруг молекул иРНК в цепочки.


Универсальные органеллы всех клеток животных и растений, находятся в цитоплазмы в свободном состоянии или на ЭПС. Содержатся в митохондриях и хлоропластах. Рибосомы синтезируют белки.

Стро

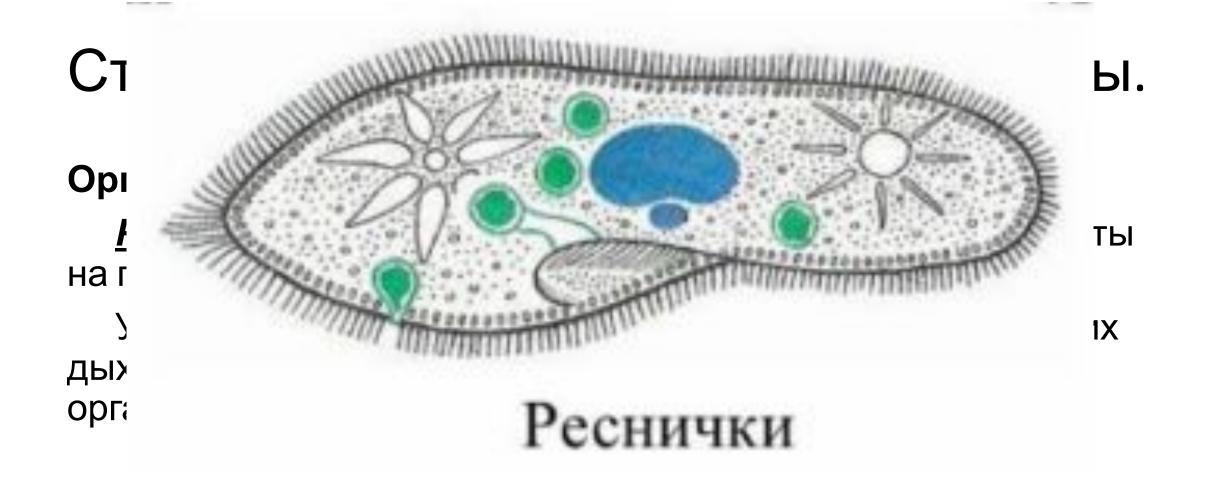
Не мє

микроск из белка объедин


Унив€ растени или на Э Рибосом

Не Мембранные органеллы

Клеточный центр – Состоит из двух центриолей, каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине – однородное вещество. Центриоли расположены перпендикулярно друг другу.


Принимает участие в делении клеток животных и низших растений. В начале деления (в профазе), центриоли расходятся к различным полюсам клетки. От центриоли к центромерам хромосом отходят нити веретена деления. В анафазе эти нити притягивают хроматиды к поясам. После окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.

Органоиды движения

Реснички – многочисленные цитоплазматические выросты на поверхности мембраны.

Удаление частичек пыли (рестнитчатый эпителий верхних дыхатеьных путей), передвижение одноклеточных организмов.

Органоиды движения

Жгутики – единичные цитоплазматические выросты на поверхности клетки.

Передвижение (сперматозоиды, зооспоры, одноклеточные организмы)

Органоиды движения

Пожные ножки (псевдоподии) – Амебовидные выступы цитоплазмы.

Образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи и передвижения. Характерны для лейкоцитов крови а так же клеток эндотермы кишечнополостных.

Строен

Органоид
Ложны
цитоплазм
Образу
цитоплазм
для лейко
кишечнопс

ноиды.

ыступы

местах актерны

Ложноножки

Органоиды движения

Миофибриллы– Тонкие нити длиной до 1 см и более.

Служат для сокращения мышечных волокон.

Ядерная оболочка - Двухмембранная, пористая. Наружная мембрана переходит в мембраны ЭПС. Свойственна всем клеткам животных, растений и грибов.

Отделяет ядро от цитоплазмы. Регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединиц рибосом) и из цитоплазмы в ядро (белки, жиры, углеводы, АТФ, вода, ионы, нуклеотиды)

<u>Хромосомы</u> (хроматин) - В интерфазной клетке хроматин имеет вид мелкозернистых нитевидных структур, состоящих из молекул ДНК и белковой (нуклеопротеидной) обкладки. В делящихся клетках хроматиновые структуры спирализируются и образуют хромосомы. Хромосома состоит из двух хроматид и после деления ядра становится однохроматидной. К началу следующего деленения у каждой хромосомы достраивается вторая хроматида. Хромосомы имеют первичную перетяжку, на которой расположены центромеры. Перетяжка делит хромосому на два плеча одинаковой или разной длины.

Хроматиновые структуры – носители ДНК. ДНК состоит из участков – генов, несущих наследственную информацию и передающуюся от предков к потомкам через половые клетки. Совокупность хромосом, а следовательно, генов, половых клеток родителей передаются детям, что обеспечивает устойчивост признаков, характерных для данных популяций, видов. В хромосомах синтезируется ДНК, РНК.

Ядрышко - Шаровидное тело, напоминающее клубок нитей. Состоит из белка и рРНК, образуется на вторичной перетяжке ядрышковой хромосомы. При делении клеток распадается.

Формирование половинок рибосом из рРНК и белка. Половинки (субъединицы) рибосом через поры в ядерной оболочке выходят в цитоплазму и объединяются в рибосомы.

Ядерный сок (кариолимфа) - Полужидкое вещество, представляющее собой коллоидный раствор белков, нуклеиновых кислот, углеводов и минеральных солей. Реакция кислая.

Участвует в транспорте веществ и ядерных структур, заполняет пространство между ядреными структурами. Во время деления клеток смешивается с цитоплазмой.

<u>Цитоплазма</u> - полужидкое содержимое клетки, её внутренняя среда, кроме ядра и вакуоли, ограниченная плазматической мембранной. Включает гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения.

Мембранные органоиды

Вакуоль - пространство в центральной части клетки, заполненное клеточным соком; одномембранная органелла, содержащаяся в некоторых эукариотических клетках. Вакуоли развиваются из мембранных пузырьков — провакуолей. Провакуоли являются производными ЭПС и АГ, они сливаются и образуют вакуоли.

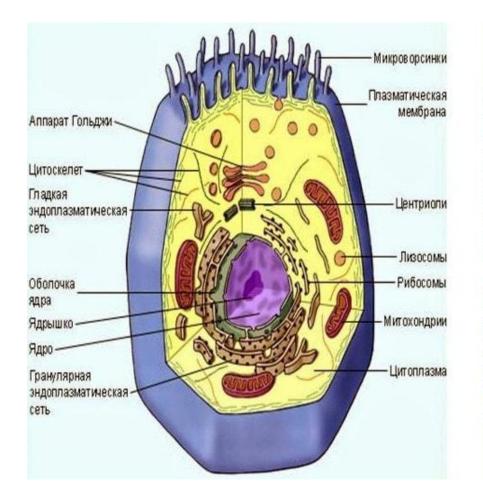
Вакуоли в растительных клетках формируют внутреннюю водную среду, с их помощью осуществляется водно-солевой обмен. Участвуют в активном транспорте и накоплении в вакуолях некоторых ионов. Другая важнейшая роль вакуолей состоит в поддержании тургорного давления внутриклеточной жидкости в клетке. К тому же, вакуоли накапливают запасные вещества и участвуют в «захоронении» отбросов (конечных продуктов метаболизма).

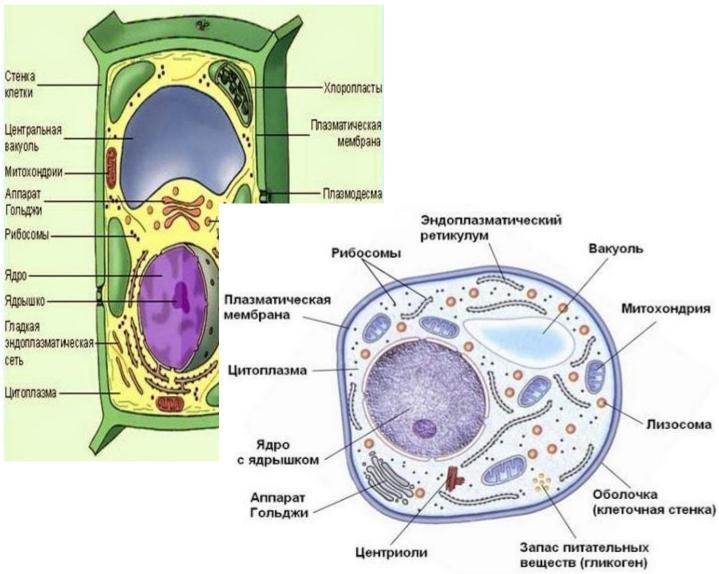
Органоиды. Продолжение

<u>Клеточная стенка</u> – оболочка клетки, расположенная снаружи от ЦПМ и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинствабактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

Клеточные стенки бактерий состоят из пептидогликана (муреина)

Клеточные стенки грибов состоят из хитина и глюканов

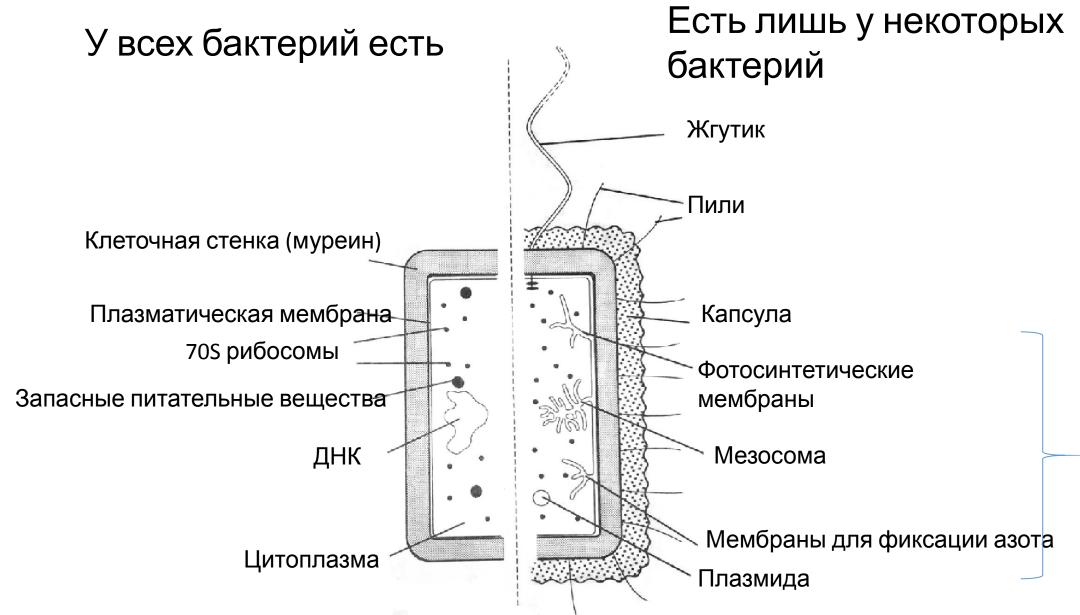

Большинство водорослей имеют клеточную стенку изцеллюлозы и различных гликопротеинов. Диатомовые водоросли синтезируют свою клеточную стенку из кремнезема.


Основным компонентом клеточной стенки растений является целлюлоза. В клеточных стенках растений существуют углубления — поры, через которые проходят цитоплазматические канальца — плазмодесмы, осуществляющие контакт соседних клеток и обмен веществами между ними.

Клеточные стенки выполняют целый ряд функций: они обеспечивают жёсткость клетки для структурной и механической поддержки, придают форму клетке, направление её роста и в конечном счете морфологию всему растению. Клеточная стенка также противодействует тургору, то есть осмотическому давлению, когда дополнительное количество воды поступает в растения. Клеточные стенки защищают от патогенов, проникающих из окружающей среды, и запасают углеводы

Строение эукариотической клетки. Растения, грибы, животные

- Есть ядро и мембранные органоиды
- ДНК линейна и локализована в ядре
- 80S рибосомы (крупные). Могут быть прикреплены к ЭПС.
- Много органелл. Есть мембранные (ядро, митохондрии, хлороплаты и др.)
- Клеточная стенка растений содержит целлюлозу, грибов хитин. У животных клеточной стенки нет
- Аэробное дыхание в митохондриях
- Фотосинтез в хлоропластах
- Не способны к фиксации азота

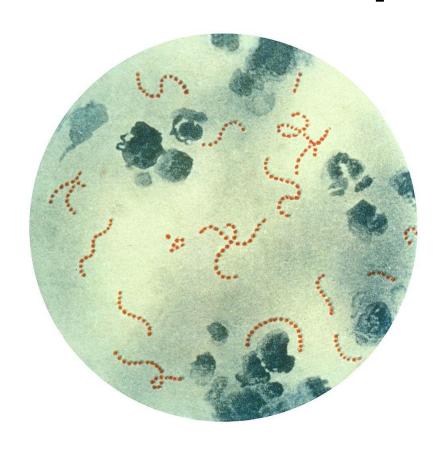


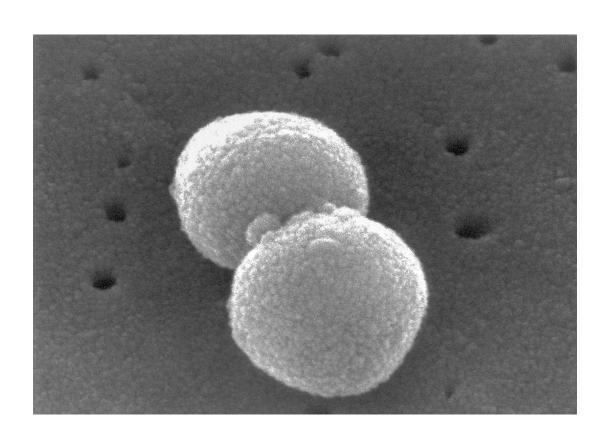
Строение клетки гриба

Строение бактериальной клетки

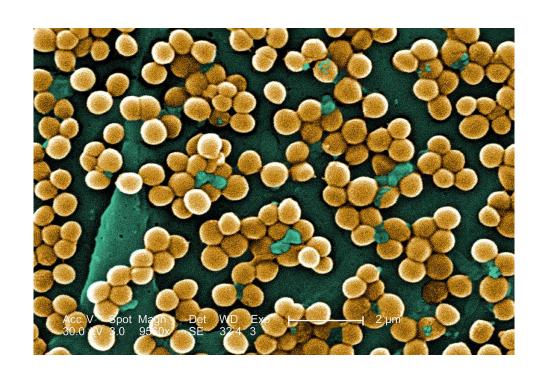
- Нет ядра
- ДНК кольцевая и локализована в цитоплазме
- 70S рибосомы (мелкие). Нет ЭПС
- Органелл мало. Ни одна из них не имеет двумембранного строения. Внутренние мембраны встречаются редко. В тех случаях, когда они есть, они ассоциированы с процессом дыхания и фотосинтеза.
- Клеточная стенка содержит муреин
- Аэробное дыхание в мезосомах или на цитоплазматической мембране.
- Фотосинтез на цитоплазме
- Некоторые представители способны фиксировать азот

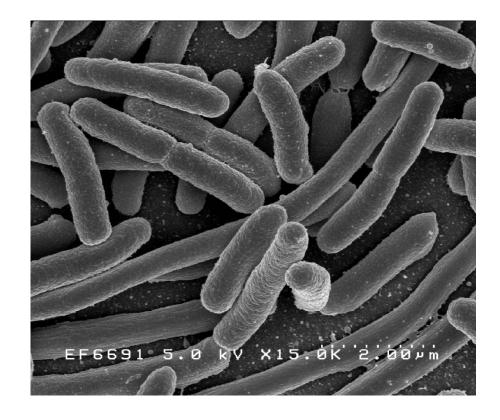
Строение клетки. Бактерия


Грам-положительные и грамотрицательные


Окрашивание по Граму (Кристиан Грам 1884 г.)

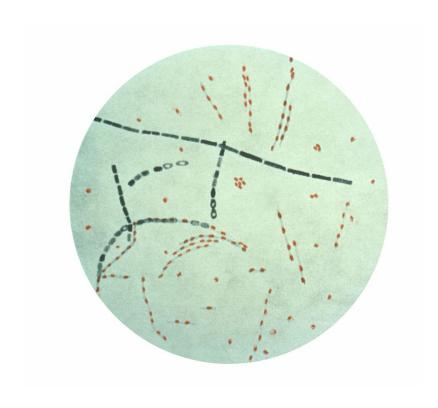
- Красим синим
- Смываем спиртом
- Красим красным
- Те клетки, которые прокрасились синим хорошо и спиртом окраска не смылась -> грам-положительны
- Те клетки, которые не прокрасились синим красителем, обесцветились спиртом и покрашены красным -> грамотрицательные

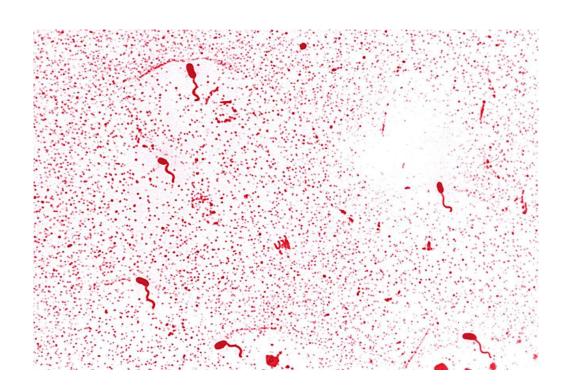

Грамотрицательны Грамположительные



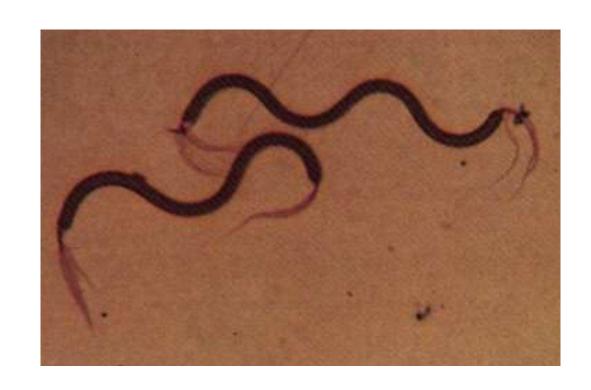
Streptococcus pyogenes (скарлатина)

Streptococcus pneumoniae (пневмония)



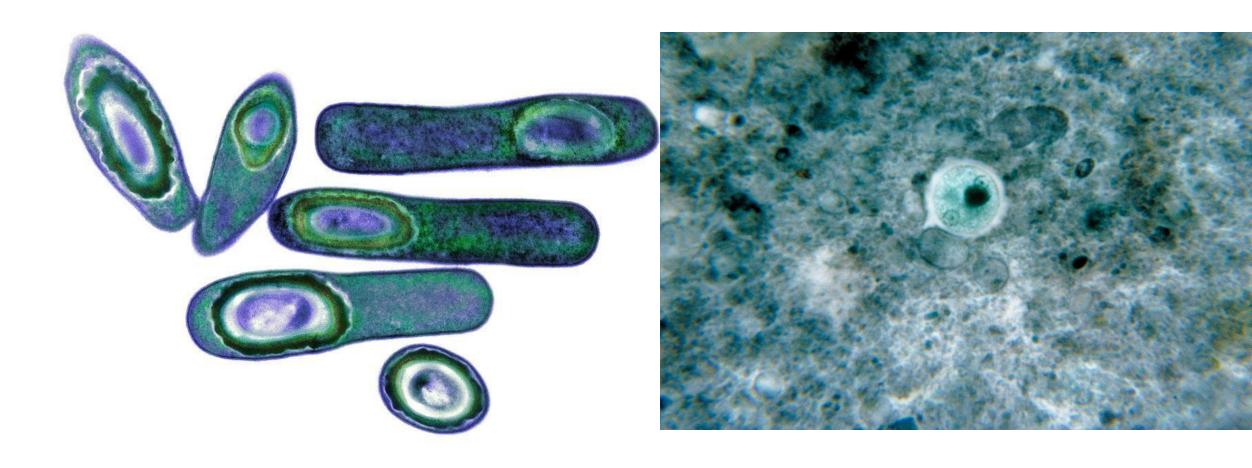

Staphylococcus aureus (Золотистый стафиллококк)

Escherihia coli

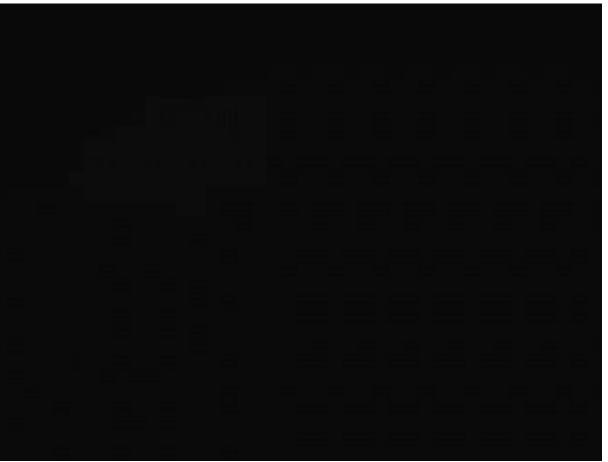

гнойные воспаления

Bacillus anthracis — возбудитель сибирской язвы

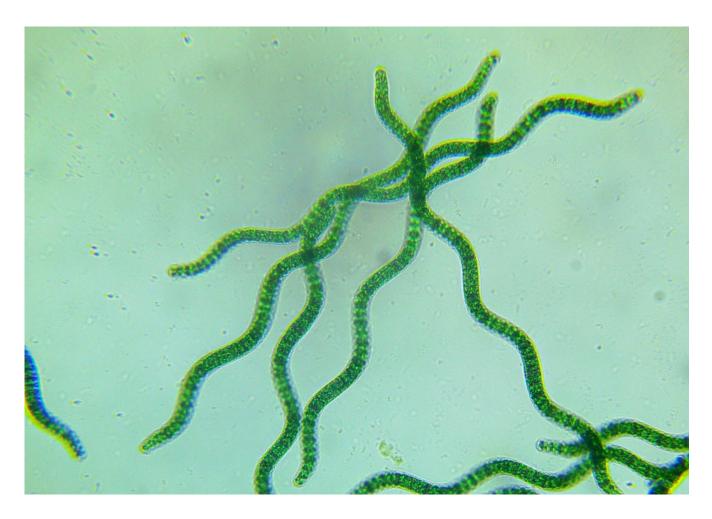
Vibrio cholerae (Холера)



Spirillium (болезнь укуса крысы)


Treponema pallidum (Сифилис)

Споры бактерий


Размножение бактерий

Питание бактерий

Anabaena Spirulina

Вторая часть. Решение задач

В каких органоидах растительной клетки протекает процесс фотосинтеза?

- •В вакуолях
- В хлоропластах
- В хромопластах
- В митохондриях

В каких органоидах растительной клетки протекает процесс фотосинтеза?

- •В вакуолях
- В хлоропластах
- В хромопластах
- В митохондриях

Из названных организмов к надцарству прокариот относится

- Эвглена зеленая
- Инфузория-туфелька
- Амеба
- Стафилококк

Из названных организмов к надцарству прокариот относится

- Эвглена зеленая
- Инфузория-туфелька
- Амеба
- Стафилококк

- Связывает органоиды и проводит потоки веществ в клетке
- Синтез белка
- Образование богатых энергие веществ
- Расщепление жиров, белков, углеводов
- Обеспечивает равномерное распределение материала в образовавшихся клетках

- Рибосомы
- Лизосомы
- Клеточный центр
- Эндоплазматическая сеть
- Митохондрии

- Связывает органоиды и проводит потоки веществ в клетке
- Синтез белка
- Образование богатых энергие веществ
- Расщепление жиров, белков, углеводов
- Обеспечивает равномерное распределение материала в образовавшихся клетках

- Рибосомы
- Лизосомы
- Клеточный центр
- Эндоплазматическая сеть
- Митохондрии

- Связывает органоиды и проводит потоки веществ в клетке
- Синтез белка
- Образование богатых энергие веществ
- Расщепление жиров, белков, углеводов
- Обеспечивает равномерное распределение материала в образовавшихся клетках

- Рибосомы
- Лизосомы
- Клеточный центр
- Эндоплазматическая сеть
- Митохондрии

- Связывает органоиды и проводит потоки веществ в клетке
- Синтез белка
- Образование богатых энергией веществ
- Расщепление жиров, белков, углеводов
- Обеспечивает равномерное распределение материала в образовавшихся клетках

- Рибосомы
- Лизосомы
- Клеточный центр
- Эндоплазматическая сеть
- Митохондрии

- Связывает органоиды и проводит потоки веществ в клетке
- Синтез белка
- Образование богатых энергией веществ
- Расщепление жиров, белков, углеводов
- Обеспечивает равномерное распределение материала в образовавшихся клетках

- Рибосомы
- Лизосомы
- Клеточный центр
- Эндоплазматическая сеть
- Митохондрии

- Связывает органоиды и проводит потоки веществ в клетке
- Синтез белка
- Образование богатых энергией веществ
- Расщепление жиров, белков, углеводов
- Обеспечивает равномерное распределение материала в образовавшихся клетках

- Рибосомы
- Лизосомы
- Клеточный центр
- Эндоплазматическая сеть
- Митохондрии

Какие утверждения верны?

- Кислород, углерод, азот, водород элементы, характерные только для живой природы
- Все клетки живых организмов имеют ядро
- Хлоропласты находятся только в клетках зеленых растений
- В клеточной стенке грибов можно обнаружить белки
- Все клетки животных содержат ядра

Какие утверждения верны?

- Кислород, углерод, азот, водород элементы, характерные только для живой природы
- Все клетки живых организмов имеют ядро
- Хлоропласты находятся только в клетках зеленых растений
- В клеточной стенке грибов можно обнаружить белки
- Все клетки животных содержат ядра

Выберите структуры, которые можно встретить и в клетках животных и в клетках грибов

- Ядро
- Нуклеоид
- Ядрышко
- Пластиды
- Комплекс Гольджи
- Клеточная стенка
- Плазмалемма

Выберите структуры, которые можно встретить и в клетках животных и в клетках грибов

- Ядро
- Нуклеоид
- Ядрышко
- Пластиды
- Комплекс Гольджи
- Клеточная стенка
- Плазмалемма

Какие структуры НЕ могут служить для транспорта веществ между клетками растений?

- Цитоплазма
- Эндоплазматическая сеть
- Хлоропласт
- Клеточная стенка

Какие структуры НЕ могут служить для транспорта веществ между клетками растений?

- Цитоплазма
- Эндоплазматическая сеть
- Хлоропласт
- Клеточная стенка

Бактерии являются возбудителями

- Клещевого энцефалита
- Чумы
- Коревой краснухи
- Гепатита А

Бактерии являются возбудителями

- Клещевого энцефалита
- Чумы
- Коревой краснухи
- Гепатита А

В клетках грибов нельзя обнаружить

- Вакуоли
- Митохондрии
- •Пластиды
- Рибосомы

В клетках грибов нельзя обнаружить

- Вакуоли
- Митохондрии
- Пластиды
- Рибосомы

Строение тела бактерии

- Многоклеточное
- Одноклеточное

Строение тела бактерии

- Многоклеточное
- Одноклеточное

Какие органеллы имеются в клетках бактерий

- Ядро
- Цитоплазма
- Пластиды
- Митохондрии
- Рибосомы

Какие органеллы имеются в клетках бактерий

- Ядро
- Цитоплазма
- Пластиды
- Митохондрии
- Рибосомы

Какое дыхание характерно для бактерий брожения?

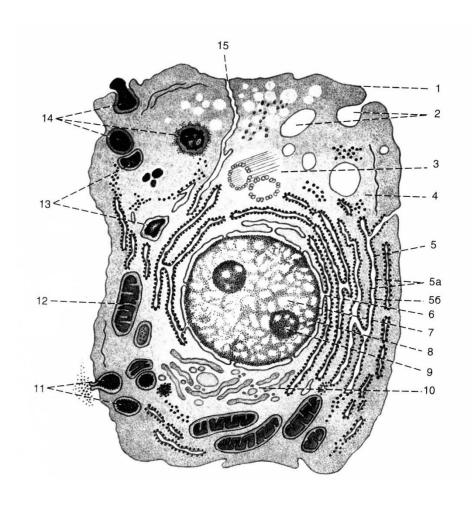
- Кислородное
- Бескислородное

Какое дыхание характерно для бактерий брожения?

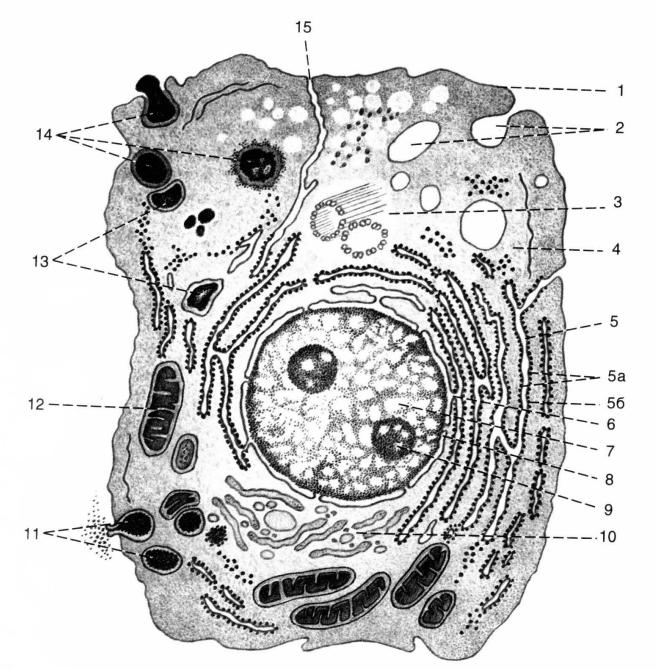
- Кислородное
- Бескислородное

Чем обусловлено довольно широкое распространение бактерий в природе?

Что такое антибиотики?

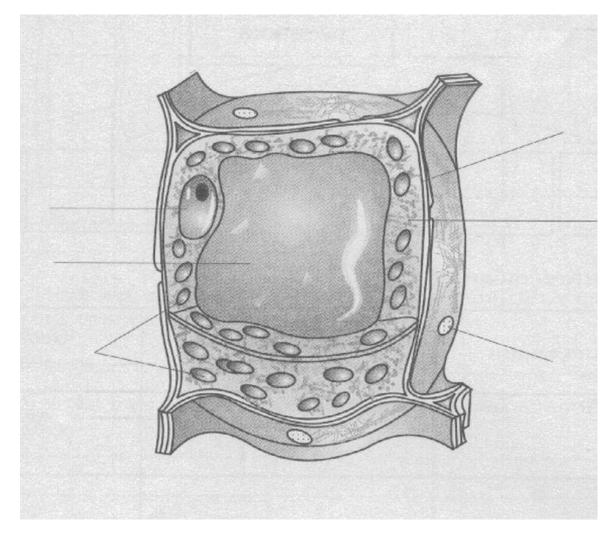

Какие из этих болезней вызваны вирусами, а какие – бактериями?

- Бешенство
- Ветряная оспа
- Брюшной тиф
- Бутулизм
- Грипп
- Пневмония
- Сибирская язва
- Корь


Какие из этих болезней вызваны вирусами, а какие – бактериями?

- Бешенство вирус
- Ветряная оспа вирус
- Брюшной тиф бактерия
- Бутулизм бактерия
- Грипп вирус
- Пневмония бактерия
- Сибирская язва бактерия
- Корь вирус

Клетка какого царства изображена на картинке?


Клетка картині

эна на

Клетка какого царства изображена на

картинке?

	Растения	Грибы	Животные
Наличие пластид			
Способ питания			
Запасной углевод			
Вещество клеточной стенки			
Пиноцитоз			
Фагоцитоз			
Способность к активному движению			