Linear Algebra

Chapter 1
Linear Equations in Linear
Algebra

1.1 Matrices and Systems of Linear Equations

Definition

- An equation such as $x+3 y=9$ is called a linear equation (in two variables or unknowns).
- The graph of this equation is a straight line in the $x y$-plane.
- A pair of values of x and y that satisfy the equation is called a solution.

Definition

A linear equation in n variables $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ has the form $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots+a_{n} x_{n}=b$ where the coefficients $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ and b are real numbers.

Solutions for system of linear equations

Figure 1.1
Unique solution

$$
\begin{aligned}
x+3 y & =9 \\
-2 x+y & =-4
\end{aligned}
$$

Lines intersect at $(3,2)$
Unique solution:

$$
x=3, y=2
$$

Figure 1.2
No solution
$-2 x+y=3$
$-4 x+2 y=2$
Lines are parallel.
No point of intersection.
No solutions.

Figure 1.3
Many solution
$4 x-2 y=6$
$6 x-3 y=9$
Both equations have the same graph. Any point on the graph is a solution.
Many solutions.

A linear equation in three variables corresponds to a plane in three-dimensional space.
※ Systems of three linear equations in three variables:

- Unique solution

Ch1_5

- No solutions

- Many solutions

$A B C$

A solution to a system of a three linear equations will be points that lie on all three planes.
The following is an example of a system of three linear equations:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
2 x_{1}+3 x_{2}+x_{3} & =3 \\
x_{1}-x_{2}-2 x_{3} & =-6
\end{aligned}
$$

How to solve a system of linear equations? For this we introduce a method called Gauss-Jordan elimination.
(Section1.2)

Definition

- A matrix is a rectangular array of numbers.
-The numbers in the array are called the elements of the matrix.
- Matrices

$$
A=\left[\begin{array}{ccc}
2 & 3 & -4 \\
7 & 5 & -1
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}
7 & 1 \\
0 & 5 \\
-8 & 3
\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ccc}
3 & 5 & 6 \\
0 & -2 & 5 \\
8 & 9 & 12
\end{array}\right]
$$

- Row and Column

$$
A=\left[\begin{array}{lll}
2 & 3 & -4 \\
7 & 5 & -1
\end{array}\right]
$$

$$
\begin{array}{cccc}
{\left[\begin{array}{lll}
2 & 3 & -4
\end{array}\right]} & {\left[\begin{array}{lll}
7 & 5 & -1
\end{array}\right]} & {\left[\begin{array}{l}
2 \\
7
\end{array}\right]} & {\left[\begin{array}{l}
3 \\
5
\end{array}\right]}
\end{array} \begin{aligned}
& {\left[\begin{array}{l}
-4 \\
-1
\end{array}\right]} \\
& \text { row 1 }
\end{aligned}
$$

- Submatrix

$$
\begin{aligned}
& A= {\left[\begin{array}{ccc}
1 & 7 & 4 \\
2 & 3 & 0 \\
5 & 1 & -2
\end{array}\right] \quad P=\left[\begin{array}{ll}
1 & 7 \\
2 & 3 \\
5 & 1
\end{array}\right] \quad Q=\left[\begin{array}{l}
7 \\
3 \\
1
\end{array}\right] \quad R=\left[\begin{array}{rr}
1 & 4 \\
5 & -2
\end{array}\right] } \\
& \text { matrix A }
\end{aligned}
$$

- Size and Type

$\left[\begin{array}{rrr}1 & 0 & 3 \\ -2 & 4 & 5\end{array}\right]$

$$
\left[\begin{array}{ccc}
2 & 5 & 7 \\
-9 & 0 & 1 \\
-3 & 5 & 8
\end{array}\right] \quad\left[\begin{array}{llll}
4 & -3 & 8 & 5
\end{array}\right] \quad\left[\begin{array}{l}
8 \\
3 \\
2
\end{array}\right]
$$

Size: 2×3
3×3 matrix
a square matrix
1×4 matrix arow matrix
3×1 matrix
a column matrix

- Location

$$
A=\left[\begin{array}{lll}
2 & 3 & -4 \\
7 & 5 & -1
\end{array}\right] \quad a_{13}=-4, a_{21}=7 \quad \begin{aligned}
& \text { The element } a_{i j} \text { is in row } i, \text { column } j \\
& \text { The element in location }(1,3) \text { is }-4
\end{aligned}
$$

- Identity Matrices
diagonal size

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$ and matrices

- matrix of coefficients and augmented matrix

$$
\begin{array}{cl}
\begin{array}{c}
x_{1}+x_{2}+x_{3}=2 \\
2 x_{1}+3 x_{2}+x_{3}=3 \\
x_{1}-x_{2}-2 x_{3}
\end{array}=-6
\end{array} \begin{array}{ll}
{\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & -1 & -2
\end{array}\right] \quad\left[\begin{array}{rrrr}
1 & 1 & 1 & 2 \\
2 & 3 & 1 & 3 \\
1 & -1 & -2 & -6
\end{array}\right]} \\
\text { matrix of coefficients } & \text { augmented matrix }
\end{array}
$$

Elementary Row Operations of Matrices

- Elementary Transformation

1. Interchange two equations.
2. Multiply both sides of an equation by a nonzero constant.
3. Add a multiple of one equation to another equation.

- Elementary Row Operation

1. Interchange two rows of a matrix.
2. Multiply the elements of a row by a nonzero constant.
3. Add a multiple of the elements of one row to the corresponding elements of another row.

Example 1

Solving the following system of linear equation.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
2 x_{1}+3 x_{2}+x_{3} & =3 \\
x_{1}-x_{2}-2 x_{3} & =-6
\end{aligned}
$$

Solution

Equation Method

Initial system:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}-x_{3} & =-1 \\
-2 x_{2}-3 x_{3} & =-8
\end{aligned}
$$

Analogous Matrix Method Augmented matrix:
$\underset{\substack{\text { R2+(-2)R1 } \\ \text { R3+(-1)R1 }}}{\approx}\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 2 & 3 & 1 & 3 \\ 1 & -1 & -2 & -6\end{array}\right]$

Eq1+(-1)Eq2

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
x_{2}-x_{3} & =-1
\end{aligned}
$$

$$
\text { Eq3+(2)Eq2 } \square-2 x_{2}-3 x_{3}=-8
$$

$$
x_{1}+2 x_{3}=3
$$

$$
x_{2}-x_{3}=-1
$$

(-1/5)Eq3 \qquad

$$
\rightarrow \quad-5 x_{3}=-10
$$

$\mathrm{Eq} 1+(-2) \mathrm{Eq} 3 \longrightarrow x_{1}+2 x_{3}=3$
$\mathrm{Eq} 2+\mathrm{Eq} 3 \quad \square \quad x_{3}=2$

The solution is

$$
\begin{aligned}
& x_{1}=-1 \\
& x_{2}=1 \\
& x_{3}=2
\end{aligned}
$$

$\left[\begin{array}{rrrr}1 & 1 & 1 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & -2 & -3 & -8\end{array}\right]$

$\underset{(-1 / 5) \mathrm{R} 3}{\approx}\left[\begin{array}{rrrr}1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 2\end{array}\right]$
$\underset{\mathrm{R} 2+\mathrm{R} 3}{\approx} \underset{\mathrm{R} 3}{\approx(-2) \mathrm{R} 3}\left[\begin{array}{cccr}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$

The solution is

$$
x_{1}=-1, x_{2}=1, x_{3}=2 \text {. }
$$

Example 2

Solving the following system of linear equation.

$$
\begin{aligned}
x_{1}-2 x_{2}+4 x_{3} & =12 \\
2 x_{1}-x_{2}+5 x_{3} & =18 \\
-x_{1}+3 x_{2}-3 x_{3} & =-8
\end{aligned}
$$

Solution

\(\left[\begin{array}{rrrr}1 \& -2 \& 4 \& 12

2 \& -1 \& 5 \& 18

-1 \& 3 \& -3 \& -8\end{array}\right] \quad\)| $\mathrm{R} 2+(-2) \mathrm{R} 1$ |
| :--- |
| $\mathrm{R} 3+\mathrm{R} 1$ |\(\quad\left[\begin{array}{rrrr}1 \& -2 \& 4 \& 12

0 \& $$
\begin{array}{|r}3 \\
\hline\end{array}
$$

0 \& 1 \& -3 \& -6

\hline\end{array}\right]\)

$\left(\frac{1}{2}\right)^{\mathrm{R} 3}\left[\begin{array}{rrrr}1 & 0 & 2 & 8 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 1\end{array}\right] \quad \underset{\mathrm{R} 1+\mathrm{\tilde{(}-2) R 3}}{\mathrm{R} 2+\mathrm{R} 3}\left[\begin{array}{llll}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 3\end{array}\right] \quad$ solution $\left\{\begin{array}{l}x_{1}=2 \\ x_{2}=1 . \\ x_{3}=3\end{array}\right.$

Example 3

Solve the system

$$
\begin{aligned}
4 x_{1}+8 x_{2}-12 x_{3} & =44 \\
3 x_{1}+6 x_{2}-8 x_{3} & =32 \\
-2 x_{1}-x_{2} & =-7
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{R} 1+(-1) \mathrm{R} 3 \\
\mathrm{R} 2+2 \mathrm{R} 3
\end{array}\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] . \quad \text { The solution is } x_{1}=2, x_{2}=3, x_{3}=-1 \text {. }
\end{aligned}
$$

Summary

$$
\begin{aligned}
4 x_{1}+8 x_{2}-12 x_{3} & =44 \\
3 x_{1}+6 x_{2}-8 x_{3} & =32 \\
-2 x_{1}-x_{2} & =-7
\end{aligned}
$$

Use row operations to $[A: B]$:

$$
\begin{aligned}
& {[A: B]=\left[\begin{array}{rrr|r}
{\left[\begin{array}{rrr}
4 & 8 & -12 \\
3 & 6 & -8 \\
2 & -1 & 0
\end{array}\right.} & \left.\begin{array}{c}
44 \\
32 \\
-7 \\
\hline
\end{array}\right] \\
B]: & \mathrm{A} \\
\mathrm{~B}
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{rrrr}
4 & 8 & -12 & 44 \\
3 & 6 & -8 & 32 \\
-2 & -1 & 0 & -7
\end{array}\right] \approx \boxtimes \approx\left[\begin{array}{rrrr}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -1
\end{array}\right] \text {. i.e., }[A: B] \approx \boxtimes \approx\left[I_{n}: X\right]
$$

Def. $\left[I_{n}: X\right]$ is called the reduced echelon form of $[A: B]$.

Note. 1. If A is the matrix of coefficients of a system of n equations in n variables that has a unique solution, then A is row equivalent to $I_{n}\left(A \approx I_{n}\right)$.
2. If $A \approx I_{n}$, then the system has unique solution.

Example 4 Many Systems

Solving the following three systems of linear equation, all of which have the same matrix of coefficients.

$$
\begin{array}{r}
x_{1}-x_{2}+3 x_{3}=b_{1} \\
2 x_{1}-x_{2}+4 x_{3}=b_{2} \\
-x_{1}+2 x_{2}-4 x_{3}=b_{3}
\end{array} \text { for } \quad\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{r}
8 \\
11 \\
-11
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{r}
3 \\
3 \\
-4
\end{array}\right] \text { in turn }
$$

Solution

Homework

- Exercises will be given by the teachers of the practical classes.

1.2 Gauss-Jordan Elimination

Definition

A matrix is in reduced echelon form if

1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix.
2. The first nonzero element of each other row is $\mathbf{1}$. This element is called a leading 1.
3. The leading 1 of each row after the first is positioned to the right of the leading 1 of the previous row.
4. All other elements in a column that contains a leading 1 are zero.

- Examples for reduced echelon form

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 8 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 3
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 9
\end{array}\right]\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 0 \\
0 & 0 & 3 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& { }^{(} \sqrt{ }{ }^{(} \\
& \text {) }
\end{aligned}
$$

- elementary row operations, reduced echelon form
- The reduced echelon form of a matrix is unique.

Gauss-Jordan Elimination

- System of linear equations
\Rightarrow augmented matrix
\Rightarrow reduced echelon form
\Rightarrow solution

Example 1

Use the method of Gauss-Jordan elimination to find reduced echelon form of the following matrix.

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
0 & 0 & 2 & -2 & 2 \\
3 & 3 & -3 & 9 & 12 \\
4 & 4 & -2 & 11 & 12
\end{array}\right]} \\
& \text { Solution pivot (leading 1) }
\end{aligned}
$$

The matrix is the reduced echelon form of the given matrix.

Example 2

Solve, if possible, the system of equations

$$
\begin{array}{r}
3 x_{1}-3 x_{2}+3 x_{3}=9 \\
2 x_{1}-x_{2}+4 x_{3}=7 \\
3 x_{1}-5 x_{2}-x_{3}=7
\end{array}
$$

Solution

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
3 & -3 & 3 & 9 \\
2 & -1 & 4 & 7 \\
3 & -5 & -1 & 7
\end{array}\right]\left(\frac { 1 } { 3 } \left(\mathbb{1} \cdot \mathrm{RL}\left[\begin{array}{rrrr}
1 & -1 & 1 & 3 \\
2 & -1 & 4 & 7 \\
3 & -5 & -1 & 7
\end{array}\right] \underset{\mathrm{R} 2+(-(-3) \mathrm{R} 1}{\approx}\left[\begin{array}{rrrr}
1 & -1 & 1 & 3 \\
0 & 1 & 2 & 1 \\
0 & -2 & -4 & -2
\end{array}\right]\right.\right.} \\
& \underset{\text { R1+ }+2 \times 2}{ }\left[\begin{array}{llll}
1 & 0 & 3 & 4 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] ~\left[\begin{array}{l}
x_{1}+3 x_{3}=4 \\
x_{2}+2 x_{3}=1
\end{array} \Rightarrow \begin{array}{l}
x_{1}=-3 x_{3}+4 \\
x_{2}=-2 x_{3}+1
\end{array}\right.
\end{aligned}
$$

The genteral solution to the system is

$$
\begin{aligned}
& x_{1}=-3 r+4 \\
& x_{2}=-2 r+1 \\
& x_{3}=r \quad, \text { where } r \text { is real number (called a parameter). }
\end{aligned}
$$

Example 3

Solve the system of equations

$$
\begin{aligned}
2 x_{1}-4 x_{2}+12 x_{3}-10 x_{4} & =58 \\
-x_{1}+2 x_{2}-3 x_{3}+2 x_{4} & =-14
\end{aligned}
$$

\Rightarrow many

sol.
Solution

$$
2 x_{1}-4 x_{2}+9 x_{3}-6 x_{4}=44
$$

$\left[\begin{array}{rrrrr}2 & -4 & 12 & -10 & 58 \\ -1 & 2 & -3 & 2 & -14 \\ 2 & -4 & 9 & -6 & 44\end{array}\right] \underset{\left(\frac{1}{2}\right)^{R} 1}{\approx}\left[\begin{array}{rrrrr}(1) & -2 & 6 & -5 & 29 \\ -1 & 2 & -3 & 2 & -14 \\ 2 & -4 & 9 & -6 & 44\end{array}\right]$
$\underset{R 2+(-2) R 1}{\approx}\left[\begin{array}{rrrrr}1 & -2 & 6 & -5 & 29 \\ 0 & 0 & 3 & -3 & 15 \\ 0 & 0 & -3 & 4 & -14\end{array}\right] \underset{\left(\frac{1}{3}\right)^{R} 2}{\approx}\left[\begin{array}{rrrrr}1 & -2 & 6 & -5 & 29 \\ 0 & 0 & 1 & -1 & 5 \\ 0 & 0 & -3 & 4 & -14\end{array}\right]$
$\underset{\mathrm{R} 1+(-6) \mathrm{R} 2}{\mathrm{R} 3+3 \mathrm{R} 2}\left[\begin{array}{rrrrr}1 & -2 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 5 \\ 0 & 0 & 0 & 1 & 1\end{array}\right] \underset{\mathrm{R} 1+(-1) \mathrm{R} 32+\mathrm{R} 3}{\approx}\left[\begin{array}{rrrrr}1 & -2 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$

$$
\Rightarrow \quad \begin{aligned}
x_{1}-2 x_{2} & =-2 \\
x_{3} & =6 \\
x_{4} & =1
\end{aligned} \Rightarrow\left\{\begin{array}{l}
x_{1}=2 r-2 \\
x_{2}=r \\
x_{3}=6 \\
x_{4}=1
\end{array} \quad, \text { for some } r .\right.
$$

Example 4

Solve the system of equations

Solution

$$
\begin{array}{r}
x_{1}+2 x_{2}-x_{3}+3 x_{4}+x_{5}=2 \\
2 x_{1}+4 x_{2}-2 x_{3}+6 x_{4}+3 x_{5}=6 \\
-x_{1}-2 x_{2}+x_{3}-x_{4}+3 x_{5}=4
\end{array}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & 2 & -1 & 3 & 1 & 2 \\
2 & 4 & -2 & 6 & 3 & 6 \\
-1 & -2 & 1 & -1 & 3 & 4
\end{array}\right] \underset{\mathrm{R} 2+(-2) \mathrm{R} 1}{\approx}\left[\begin{array}{rrrrrr}
1 & 2 & -1 & 3 & 1 & 2 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 2 & 4 & 6
\end{array}\right]} \\
& \underset{\mathrm{R} 2 \leftrightarrow \mathrm{R} 3}{\approx}\left[\begin{array}{cccccc}
1 & 2 & -1 & 3 & 1 & 2 \\
0 & 0 & 0 & 2 & 4 & 6 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right] \underset{\left(\frac{1}{2}\right) \mathrm{R} 2}{\approx}\left[\begin{array}{cccccc}
1 & 2 & -1 & 3 & 1 & 2 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right] \\
& \underset{\mathrm{R} 1+(-3) \mathrm{R} 2}{\approx}\left[\begin{array}{rrrrrr}
1 & 2 & -1 & 0 & -5 & -7 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right] \underset{\mathrm{R} 2+(-2) \mathrm{R} 3}{\approx}\left[\begin{array}{rrrrrr}
1 & 2 & -1 & 0 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right] \\
& x_{1}=-2 x_{2}+x_{3}+3 \quad x_{1}=-2 r+s+3 \\
& \Rightarrow x_{4}=-1 \quad \Rightarrow x_{2}=r, x_{3}=s, x_{4}=-1, \text { for some } r \text { and } s \text {. } \\
& x_{5}=2 \quad x_{5}=2
\end{aligned}
$$

Example 5

This example illustrates a system that has no solution. Let us try to solve the system

$$
x_{1}-x_{2}+2 x_{3}=3
$$

$$
\begin{aligned}
2 x_{1}-2 x_{2}+5 x_{3} & =4 \\
x_{1}+2 x_{2}-x_{3} & =-3 \\
2 x_{2}+2 x_{3} & =1
\end{aligned}
$$

Solution

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
2 & -2 & 5 & 4 \\
1 & 2 & -1 & -3 \\
0 & 2 & 2 & 1
\end{array}\right] \underset{\mathrm{R} 2+(-2) \mathrm{R} 1}{\mathrm{R} 3+(-1) \mathrm{R} 1}\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
0 & 0 & 1 & -2 \\
0 & 3 & -3 & -6 \\
0 & 2 & 2 & 1
\end{array}\right] \underset{\mathrm{R} 2 \leftrightarrow \mathrm{R} 3}{\approx}\left[\begin{array}{rrrr}
1 & -1 & 2 & 3 \\
0 & 3 & -3 & -6 \\
0 & 0 & 1 & -2 \\
0 & 2 & 2 & 1
\end{array}\right]
$$

$\left(\frac{1}{3}\right)=\left[\begin{array}{rrrr}1 & -1 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 2 & 2 & 1\end{array}\right] \underset{\mathrm{R} 4+(-2) \mathrm{R} 2}{\approx}\left[\begin{array}{rrrr}1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 4 & 5\end{array}\right] \underset{\substack{\mathrm{R} 1+(-1) \mathrm{R} 3 \\ \mathrm{R} 2+\mathrm{R} 3 \\ \mathrm{R} 4+(-4) \mathrm{R} 3}}{\approx}\left[\begin{array}{llll}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 13\end{array}\right]$
$\left(\frac{1}{13}\right)_{R 4}\left[\begin{array}{rrrr}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right] \quad \begin{aligned} & 0 x_{1}+0 x_{2}+0 x_{3}=1 \\ & \text { The system has no solution. }\end{aligned}$

Homogeneous System of linear Equations

Definition

A system of linear equations is said to be homogeneous if all the constant terms are zeros.

Example:

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}-5 x_{3}=0 \\
-2 x_{1}-3 x_{2}+6 x_{3}=0
\end{array}\right.
$$

Observe that $x_{1}=0, x_{2}=0, x_{3}=0$ is a solution.
Theorem 1.1
A system of homogeneous linear equations in n variables always has the solution $x_{1}=0, x_{2}=0 \ldots, x_{n}=0$. This solution is called the trivial solution.

Homogeneous System of linear Equations

Note. Non trivial solution

Example: $\left\{\begin{array}{r}x_{1}+2 x_{2}-5 x_{3}=0 \\ -2 x_{1}-3 x_{2}+6 x_{3}=0\end{array}\right.$
The system has other nontrivial solutions.

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & -5 & 0 \\
-2 & -3 & 6 & 0
\end{array}\right] \approx \boxtimes \approx\left[\begin{array}{cccc}
1 & 0 & 3 & 0 \\
0 & 1 & -4 & 0
\end{array}\right]} \\
& \therefore x_{1}=-3 r, x_{2}=4 r, x_{3}=r
\end{aligned}
$$

Theorem 1.2

A system of homogeneous linear equations that has more variables than equations has many solutions.

Homework

- Exercise will be given by the teachers of the practical classes.

1.3 Gaussian Elimination

Definition

A matrix is in echelon form if

1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix.
2. The first nonzero element of each row is 1 . This element is called a leading 1.
3. The leading 1 of each row after the first is positioned to the right of the leading 1 of the previous row.
(This implies that all the elements below a leading 1 are zero.)

Example 6

Solving the following system of linear equations using the method of Gaussian elimination.

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+2 x_{4} & =-1 \\
-x_{1}-2 x_{2}-2 x_{3}+x_{4} & =2
\end{aligned}
$$

Solution

$$
2 x_{1}+4 x_{2}+8 x_{3}+12 x_{4}=4
$$

Starting with the augmented matrix, create zeros below the pivot in the first column.

$$
\left[\begin{array}{rrrrr}
1 & 2 & 3 & 2 & -1 \\
-1 & -2 & -2 & 1 & 2 \\
2 & 4 & 8 & 12 & 4
\end{array}\right] \underset{R 3+(-2) R 1}{R 2+R 1} \underset{R 1}{\approx}\left[\begin{array}{lllll}
1 & 2 & 3 & 2 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 2 & 8 & 6
\end{array}\right]
$$

At this stage, we create a zero only below the pivot.

$$
\underset{R 3+(-2) R 2}{\approx}\left[\begin{array}{llllr}
1 & 2 & 3 & 2 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 2 & 4
\end{array}\right] \underset{\frac{1}{2} R 3}{\approx}\left[\begin{array}{rrrrr}
1 & 2 & 3 & 2 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

We have arrived at the echelon form.

The corresponding system of equation is

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+2 x_{4} & =-1 \\
x_{3}+3 x_{4} & =1 \\
x_{4} & =2
\end{aligned}
$$

We get

$$
\begin{aligned}
x_{3}+3(2) & =1 \\
x_{3} & =-5
\end{aligned}
$$

Substituting $x_{4}=2$ and $x_{3}=-5$ into the first equation,

$$
\begin{aligned}
x_{1}+2 x_{2}+3(-5)+2(2) & =-1 \\
x_{1}+2 x_{2} & =10 \\
x_{1} & =-2 x_{2}+10
\end{aligned}
$$

Let $x_{2}=r$. The system has many solutions. The solutions are

$$
x_{1}=-2 r+10, x_{2}=r, x_{3}=-5, x_{4}=2
$$

Example 7

Solving the following system of linear equations using the method of Gaussian elimination, performing back substitution using matrices.

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+2 x_{4} & =-1 \\
-x_{1}-2 x_{2}-2 x_{3}+x_{4} & =2
\end{aligned}
$$

Solution

$$
2 x_{1}+4 x_{2}+8 x_{3}+12 x_{4}=4
$$

We arrive at the echelon form as in the previous example.

$$
\left[\begin{array}{rrrrr}
1 & 2 & 3 & 2 & -1 \\
-1 & -2 & -2 & 1 & 2 \\
2 & 4 & 8 & 12 & 4
\end{array}\right] \approx \boxtimes \approx\left[\begin{array}{llllr}
1 & 2 & 3 & 2 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

This marks the end of the forward elimination of variables from equations. We now commence the back substitution using matrices.

$$
\left.\begin{array}{rrrrr}
{\left[\begin{array}{rrrrr}
1 & 2 & 3 & 2 & -1 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]} \\
\begin{array}{c}
R 1+(-2) R 3 \\
R 2+(-3) R 3
\end{array} & \approx\left[\begin{array}{llllr}
1 & 2 & 3 & 0 & -5 \\
0 & 0 & 1 & 0 & -5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \\
\approx \\
\approx 1+(-3) R 2
\end{array} \begin{array}{rrrrrr}
1 & 2 & 0 & 0 & 10 \\
0 & 0 & 1 & 0 & -5 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

This matrix is the reduced echelon form of the original augmented matrix. The corresponding system of equations is

$$
\begin{aligned}
x_{1}+2 x_{2} & =10 \\
x_{3} & =-5 \\
x_{4} & =2
\end{aligned}
$$

Let $x_{2}=r$. We get same solution as previously,

$$
x_{1}=-2 r+10, x_{2}=r, x_{3}=-5, x_{4}=2
$$

