Linear Algebra

Chapter 1 Linear Equations in Linear Algebra

1.1 Matrices and Systems of Linear Equations

Definition

- An equation such as x+3y=9 is called a *linear equation* (in *two* <u>variables or unknowns</u>).
- The graph of this equation is a <u>straight line</u> in the *xy*-plane.
- A pair of values of x and y that satisfy the equation is called a *solution*.

Definition

A *linear equation* in *n* <u>variables</u> $x_1, x_2, x_3, ..., x_n$ has the form $a_1x_1 + a_2x_2 + a_3x_3 + ... + a_nx_n = b$ where the <u>coefficients</u> $a_1, a_2, a_3, ..., a_n$ and *b* are <u>real</u> <u>numbers</u>.

A linear equation in three variables corresponds to a plane in three-dimensional space.

- X Systems of three linear equations in three variables:
 - Unique solution

No solutions

Many solutions

A solution to a system of a three linear equations will be points that lie on all three planes.

The following is an example of a system of three linear equations:

$$x_{1} + x_{2} + x_{3} = 2$$

$$2x_{1} + 3x_{2} + x_{3} = 3$$

$$x_{1} - x_{2} - 2x_{3} = -6$$

How to solve a system of linear equations? For this we introduce a method called Gauss-Jordan elimination. (Section1.2)

Definition

- •A *matrix* is a rectangular array of numbers.
- •The numbers in the array are called the *elements* of the matrix.

Matrices

$$A = \begin{bmatrix} 2 & 3 & -4 \\ 7 & 5 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 7 & 1 \\ 0 & 5 \\ -8 & 3 \end{bmatrix} \quad C = \begin{bmatrix} 3 & 5 & 6 \\ 0 & -2 & 5 \\ 8 & 9 & 12 \end{bmatrix}$$

• Row and Column

$$A = \begin{bmatrix} 2 & 3 & -4 \\ 7 & 5 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & -4 \end{bmatrix} \begin{bmatrix} 7 & 5 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 7 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} \begin{bmatrix} -4 \\ -1 \end{bmatrix}$$

row 1 row 2 column 1 column 2 column 3

• Submatrix

$$A = \begin{bmatrix} 1 & 7 & 4 \\ 2 & 3 & 0 \\ 5 & 1 & -2 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 7 \\ 2 & 3 \\ 5 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 4 \\ 5 & -2 \end{bmatrix}$$

matrix A submatrices of A

Size and Type								
$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 4 & 5 \end{bmatrix}$	$\begin{bmatrix} 2 & 5 & 7 \\ -9 & 0 & 1 \\ -3 & 5 & 8 \end{bmatrix}$	[4 -3 8 5]	$\begin{bmatrix} 8\\3\\2 \end{bmatrix}$					
Size: 2×3	3×3 matrix a square matrix	1×4 matrix a <u>row matri</u> x	3×1 matrix a column matrix					

Location

$$A = \begin{bmatrix} 2 & 3 & -4 \\ 7 & 5 & -1 \end{bmatrix} \quad a_{13} = -4, \ a_{21} = 7$$

The element a_{ij} is in row *i*, column *j* The element in location (1,3) is -4

• Identity Matrices

diagonal size

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

matrix of coefficients and augmented matrix

$$x_{1} + x_{2} + x_{3} = 2$$

$$2x_{1} + 3x_{2} + x_{3} = 3$$

$$x_{1} - x_{2} - 2x_{3} = -6$$

1	1	1	Γ	1	1	1	2
2	3	1	,	2	3	1	3
_ 1	-1	-2		1	-1	-2	-6_

matrix of coefficients

augmented matrix

Elementary Row Operations of Matrices

- Elementary Transformation
- 1. Interchange two equations.
- 2. Multiply both sides of an equation by a nonzero constant.
- 3. Add a multiple of one equation to another equation.

- Elementary Row
 Operation
- 1. Interchange two rows of a matrix.
- 2. Multiply the elements of a row by a nonzero constant.
- 3. Add a multiple of the elements of one row to the corresponding elements of another row.

Ch1_13

 $x_1 + x_2 + x_3 = 2$ $\begin{vmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & -1 & -1 \end{vmatrix}$ Eq1+(-1)Eq2 $x_2 - x_3 = -1$ Eq3+(2)Eq2 $-2x_2 - 3x_3 = -8$ $\begin{vmatrix} 0 & -2 & -3 & -8 \end{vmatrix}$ $x_1 + 2x_3 = 3$ \sim $\begin{array}{c} \approx \\ \mathbf{R1+(-1)R2} \\ \mathbf{R3+(2)R2} \end{array} \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & -5 & -10 \end{bmatrix}$ $x_2 - x_3 = -1$ $-5x_3 = -10$ (-1/5)Eq3 \longrightarrow Eq1+(-2)Eq3 $x_1 + 2x_3 = 3$ $x_2 - x_3 = -1$ $\approx \begin{vmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 2 \end{vmatrix}$ Eq2+Eq3 $\qquad x_3 = 2$ $\begin{array}{c|c} \approx & \begin{bmatrix} 1 & 0 & 0 & -1 \\ R1 + (-2)R3 \\ R2 + R3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ $x_1 = -1$ $x_2 = 1$ $x_3 = 2$ The solution is The solution is $x_1 = -1, x_2 = 1, x_3 = 2.$ $x_1 = -1, x_2 = 1, x_3 = 2.$ Ch1 14

Solving the following system of linear equation.

$$x_{1} - 2x_{2} + 4x_{3} = 12$$

$$2x_{1} - x_{2} + 5x_{3} = 18$$

$$-x_{1} + 3x_{2} - 3x_{3} = -8$$

Solution

Solve the system $4x_1 + 8x_2 - 12x_3 = 44$ $3x_1 + 6x_2 - 8x_3 = 32$ $-2x_1 - x_2 = -7$

Solution

$$\begin{bmatrix} 4 & 8 & -12 & 44 \\ 3 & 6 & -8 & 32 \\ -2 & -1 & 0 & -7 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -3 & 11 \\ 3 & 6 & -8 & 32 \\ -2 & -1 & 0 & -7 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -3 & 11 \\ 0 & 0 & 1 & -1 \\ R3 + 2R1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -3 & 11 \\ 0 & 3 & -6 & 15 \\ 0 & 0 & 1 & -1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -3 & 11 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -1 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -3 & 11 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

R1+(-2)R2
$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 5 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

R1+(-1)R3
$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
. The solution is $x_1 = 2, x_2 = 3, x_3 = -1$.

Summary

 $4x_{1} + 8x_{2} - 12x_{3} = 44$ $3x_{1} + 6x_{2} - 8x_{3} = 32 \quad [A:B] = \begin{bmatrix} 4 & 8 & -12 \\ 3 & 6 & -8 \\ -2x_{1} - x_{2} & = -7 \end{bmatrix}$ $Use row operations to [A:B]: \qquad A \qquad B$ $\begin{bmatrix} 4 & 8 & -12 & 44 \\ 3 & 6 & -8 & 32 \\ -2 & -1 & 0 & -7 \end{bmatrix} \approx \mathbb{R} \approx \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}. \quad i.e., [A:B] \approx \mathbb{R} \approx [I_{n}:X]$

Def. $[I_n : X]$ is called the *reduced echelon form* of [A : B].

Note. 1. If A is the matrix of coefficients of a system of n equations in n variables that has a <u>unique</u> solution, then A is <u>row equivalent to</u> I_n (A ≈ I_n).
2. If A ≈ I_n, then the system has <u>unique</u> solution.

Example 4 Many Systems

Solving the following three systems of linear equation, all of which have the same matrix of coefficients.

$$x_{1} - x_{2} + 3x_{3} = b_{1}$$

$$2x_{1} - x_{2} + 4x_{3} = b_{2} \text{ for } \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} = \begin{bmatrix} 8 \\ 11 \\ -11 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix} \text{ in turn}$$

$$-x_{1} + 2x_{2} - 4x_{3} = b_{3}$$
Solution

$$\begin{bmatrix} 1 & -1 & 3 & 8 & 0 & 3 \\ 2 & -1 & 4 & 11 & 1 & 3 \\ -1 & 2 & -4 & -11 & 2 & -4 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 3 & 8 & 0 & 3 \\ R_{2+(-2)R1} \\ R_{3+R1} \end{bmatrix} \begin{bmatrix} 1 & -1 & 3 & 8 & 0 & 3 \\ 0 & 1 & -2 & -5 & 1 & -3 \\ 0 & 1 & -1 & -3 & 2 & -1 \end{bmatrix}$$
$$\approx \begin{bmatrix} 1 & 0 & 1 & 3 & 1 & 0 \\ 0 & 1 & -2 & -5 & 1 & -3 \\ 0 & 0 & 1 & 2 & 1 & 2 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & 0 & 1 & 2 & 1 & 2 \end{bmatrix}$$
The solutions to the three systems are
$$\begin{cases} x_1 = 1 \\ x_2 = -1, \\ x_3 = 2 \end{cases} \begin{cases} x_1 = 0 \\ x_2 = 3, \\ x_3 = 1 \end{cases} \begin{cases} x_1 = -2 \\ x_2 = 1 & . \\ x_3 = 2 \end{cases}$$
Ch1_18

• Exercises will be given by the teachers of the practical classes.

1.2 Gauss-Jordan Elimination

Definition

A matrix is in *reduced echelon form* if

- 1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix.
- 2. The first nonzero element of each other row is **1**. This element is called a *leading* **1**.
- 3. The leading 1 of each row after the first is positioned to the right of the leading 1 of the previous row.
- 4. All other elements in a column that contains a leading 1 are zero.

• Examples for reduced echelon form

- elementary row operations, reduced echelon form
- The reduced echelon form of a matrix is unique.

Gauss-Jordan Elimination

- System of linear equations
 - \Rightarrow augmented matrix
 - \Rightarrow reduced echelon form
 - \Rightarrow solution

Use the method of Gauss-Jordan elimination to find reduced echelon form of the following matrix.

$$\begin{array}{c} \begin{bmatrix} 0 & 0 & 2 & -2 & 2 \\ 3 & 3 & -3 & 9 & 12 \\ 4 & 4 & -2 & 11 & 12 \end{bmatrix} \\ \approx \\ R1 \leftrightarrow R2 \begin{bmatrix} 3 & -3 & 9 & 12 \\ 0 & 0 & 2 & -2 & 2 \\ 4 & 4 & -2 & 11 & 12 \end{bmatrix} \\ \approx \\ R1 \leftrightarrow R2 \begin{bmatrix} 1 & 1 & -1 & 3 & 4 \\ 0 & 0 & 2 & -2 & 2 \\ 4 & 4 & -2 & 11 & 12 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} R1 \begin{bmatrix} 1 & 1 & -1 & 3 & 4 \\ 0 & 0 & 2 & -2 & 2 \\ 4 & 4 & -2 & 11 & 12 \end{bmatrix} \\ \approx \\ R3 + (-4)R1 \begin{bmatrix} 1 & 1 & -1 & 3 & 4 \\ 0 & 0 & 2 & -2 & 2 \\ 0 & 0 & 2 & -2 & 2 \\ 0 & 0 & 2 & -1 & -4 \end{bmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{bmatrix} R2 \begin{bmatrix} 1 & 1 & -1 & 3 & 4 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 & -4 \end{bmatrix} \\ \approx \\ R1 + R2 \\ R3 + (-2)R2 \begin{bmatrix} 1 & 1 & 0 & 2 & 5 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 \end{bmatrix} \\ \approx \\ R1 + (-2)R3 \\ R1 + (-2)R3 \\ R2 + R3 \end{bmatrix} \begin{pmatrix} 1 & 1 & 0 & 0 & 17 \\ 0 & 0 & 1 & 0 & -5 \\ 0 & 0 & 0 & 1 & -6 \end{bmatrix}$$

The matrix is the reduced echelon form of the given matrix. Ch1_23

Solve, if possible, the system of equations $3x_1 - 3x_2 + 3x_3 = 9$ $2x_1 - x_2 + 4x_3 = 7$ $3x_1 - 5x_2 - x_3 = 7$

Solution

$$\begin{bmatrix} 3 & -3 & 3 & 9 \\ 2 & -1 & 4 & 7 \\ 3 & -5 & -1 & 7 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 1 & 3 \\ 2 & -1 & 4 & 7 \\ 3 & -5 & -1 & 7 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 1 & 3 \\ 2 & -1 & 4 & 7 \\ 3 & -5 & -1 & 7 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 1 & 3 \\ 0 & 1 & 2 & 1 \\ R_{3+(-3)R_1} \begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & -2 & -4 & -2 \end{bmatrix}$$

$$\approx \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies x_1 + 3x_3 = 4 \implies x_1 = -3x_3 + 4 \\ x_2 + 2x_3 = 1 \implies x_2 = -2x_3 + 1$$

The g^{R3+2R2} solution to the system is

$$x_{1} = -3r + 4$$

$$x_{2} = -2r + 1$$

$$x_{3} = r$$
, where *r* is real number (called a parameter).

Solve the system of equations $2x_1 - 4x_2 + 1$

$$2x_{1} - 4x_{2} + 12x_{3} - 10x_{4} = 58$$

$$-x_{1} + 2x_{2} - 3x_{3} + 2x_{4} = -14$$

$$2x_{2} - 4x_{3} + 9x_{5} - 6x_{4} = 44$$
sol.

 $x_{4} = 1$

Solution

$$\begin{bmatrix} 2 & -4 & 12 & -10 & 58 \\ -1 & 2 & -3 & 2 & -14 \\ 2 & -4 & 9 & -6 & 44 \end{bmatrix} \stackrel{\sim}{(\frac{1}{2})}_{R1} \begin{bmatrix} 1 & -2 & 6 & -5 & 29 \\ -1 & 2 & -3 & 2 & -14 \\ 2 & -4 & 9 & -6 & 44 \end{bmatrix} \approx \begin{bmatrix} 1 & -2 & 6 & -5 & 29 \\ 0 & 0 & \frac{3}{3} & -3 & 15 \\ 0 & 0 & -3 & 4 & -14 \end{bmatrix} \stackrel{\sim}{(\frac{1}{3})}_{R2} \begin{bmatrix} 1 & -2 & 6 & -5 & 29 \\ 0 & 0 & \frac{1}{1} & -1 & 5 \\ 0 & 0 & -3 & 4 & -14 \end{bmatrix} \stackrel{\sim}{(\frac{1}{3})}_{R2} \begin{bmatrix} 1 & -2 & 6 & -5 & 29 \\ 0 & 0 & \frac{1}{1} & -1 & 5 \\ 0 & 0 & -3 & 4 & -14 \end{bmatrix} \stackrel{\sim}{(\frac{1}{3})}_{R2} \begin{bmatrix} 1 & -2 & 0 & 0 & -2 \\ 0 & 0 & -3 & 4 & -14 \end{bmatrix} \approx \begin{bmatrix} 1 & -2 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \stackrel{\sim}{R_{1+(-1)R3}} \begin{bmatrix} 1 & -2 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \stackrel{\sim}{R_{2+R3}} \stackrel{\sim}{(\frac{1}{3})}_{R2} \stackrel{\sim}{R_{2}} \stackrel{\sim}{R_{2}}$$

Solve the system of equations $x_1 + 2x_2 - x_3 + 3x_4 + x_5 = 2$ $2x_1 + 4x_2 - 2x_3 + 6x_4 + 3x_5 = 6$ $-x_1 - 2x_2 + x_3 - x_4 + 3x_5 = 4$

Solution

 $\approx \begin{bmatrix} 1 & 2 & -1 & 3 & 1 & 2 \\ 0 & 0 & 0 & 2 & 4 & 6 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -1 & 3 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ $\approx \begin{bmatrix} 1 & 2 & -1 & 0 & -5 & -7 \\ 0 & 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & -1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ $x_1 = -2x_2 + x_3 + 3$ $x_1 = -2r + s + 3$ $\Rightarrow x_4 = -1$ $\Rightarrow x_2 = r, x_3 = s, x_4 = -1, \text{, for some } r \text{ and } s.$ $x_{5} = 2$ $x_{5} = 2$ Ch1 26

This example illustrates a system that has <u>no solution</u> . Let us try								
to solve the system $x_1 - x_2 + 2x_3 = 3$								
$2x_1 - 2x_2 + 5x_3 = 4$								
$x_1 + 2x_2 - x_3 = -3$								
Solution $2x_2 + 2x_3 = 1$								
$\begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & -2 & 5 & 4 \\ 1 & 2 & -1 & -3 \\ 0 & 2 & 2 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 0 & 1 & -2 \\ 0 & 3 & -3 & -6 \\ 0 & 2 & 2 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 3 & -3 & -6 \\ 0 & 2 & 2 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 3 & -3 & -6 \\ 0 & 0 & 1 & -2 \\ 0 & 2 & 2 & 1 \end{bmatrix}$								
$\begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix}^{R3+(-1)R1} \begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 & 2 & 1 \end{bmatrix}$ $\approx \begin{bmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 2 & 2 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 4 & 5 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 & 3 \\ R1+R2 \\ R2+R3 \\ R4+(-4)R3 \end{bmatrix} \begin{pmatrix} 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 13 \end{bmatrix}$								
$\approx \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 13 \\ 0x_1 + 0x_2 + 0x_3 = 1 \\ 0x_1 + 0x_2 + 0x_3 = 1 \end{bmatrix}$ The system has no solution. Ch1_27								

Homogeneous System of linear Equations

Definition

A system of linear equations is said to be *homogeneous* if all the <u>constant terms</u> are zeros.

Example:
$$\begin{cases} x_1 + 2x_2 - 5x_3 = 0\\ -2x_1 - 3x_2 + 6x_3 = 0 \end{cases}$$

Observe that $x_1 = 0$, $x_2 = 0$, $x_3 = 0$ is a solution.

Theorem 1.1

A system of homogeneous linear equations in *n* variables always has the solution $x_1 = 0, x_2 = 0, ..., x_n = 0$. This solution is called the **trivial solution**.

Homogeneous System of linear Equations

Note. Non trivial solution

Example:
$$\begin{cases} x_1 + 2x_2 - 5x_3 = 0\\ -2x_1 - 3x_2 + 6x_3 = 0 \end{cases}$$

The system has other nontrivial solutions.

$$\begin{bmatrix} 1 & 2 & -5 & 0 \\ -2 & -3 & 6 & 0 \end{bmatrix} \approx \mathbb{X} \approx \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & -4 & 0 \end{bmatrix}$$

$$\therefore x_1 = -3r, x_2 = 4r, x_3 = r$$

Theorem 1.2

A system of homogeneous linear equations that has more variables than equations has many solutions.

• Exercise will be given by the teachers of the practical classes.

1.3 Gaussian Elimination

Definition

A matrix is in **echelon form** if

- 1. Any rows consisting entirely of zeros are grouped at the bottom of the matrix.
- 2. The first nonzero element of each row is 1. This element is called a **leading 1**.
- 3. The leading 1 of each row after the first is positioned to the right of the leading 1 of the previous row.
 - (This implies that all the elements below a leading 1 are zero.)

Solving the following system of linear equations using the method of Gaussian elimination.

Solution

$$-x_{1} - 2x_{2} - 2x_{3} + x_{4} = 2$$
$$2x_{1} + 4x_{2} + 8x_{3} + 12x_{4} = 4$$

 $x_1 + 2x_2 + 3x_2 + 2x_4 = -1$

Starting with the augmented matrix, create zeros below the pivot in the first column.

 $\begin{bmatrix} 1 & 2 & 3 & 2 & -1 \\ -1 & -2 & -2 & 1 & 2 \\ 2 & 4 & 8 & 12 & 4 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 3 & 2 & -1 \\ 0 & 0 & 1 & 3 & 1 \\ R3 + (-2)R1 \begin{bmatrix} 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 2 & 8 & 6 \end{bmatrix}$ At this stage, we create a zero only below the pivot. $\approx \begin{bmatrix} 1 & 2 & 3 & 2 & -1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 2 & 4 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 3 & 2 & -1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$ We have arrived at the scholar form

We have arrived at the echelon form.

The corresponding system of equation is $x_1 + 2x_2 + 3x_3 + 2x_4 = -1$ $x_3 + 3x_4 = 1$ $x_{4} = 2$ We get $x_3 + 3(2) = 1$ $x_3 = -5$ Substituting $x_4 = 2$ and $x_3 = -5$ into the first equation, $x_1 + 2x_2 + 3(-5) + 2(2) = -1$ $x_1 + 2x_2 = 10$ $x_1 = -2x_2 + 10$

Let $x_2 = r$. The system has many solutions. The solutions are $x_1 = -2r + 10, x_2 = r, x_3 = -5, x_4 = 2$

Solving the following system of linear equations using the method of Gaussian elimination, performing back substitution using matrices. $x_1 + 2x_2 + 3x_3 + 2x_4 = -1$

$$-x_1 - 2x_2 - 2x_3 + x_4 = 2$$

 $2x_1 + 4x_2 + 8x_3 + 12x_4 = 4$

Solution

We arrive at the echelon form as in the previous example.

[- 1	2	3	2	-1		$\lceil 1 \rangle$	2	3	2	-1
	-1	-2	-2	1	2	≈⊠≈	0	0	1	3	1
	_ 2	4	8	12	4		0	0	0	1	2
							L	Ecl	heloi	n for	m 」

This marks the end of the forward elimination of variables from equations. We now commence the back substitution using matrices.

$$\begin{bmatrix} 1 & 2 & 3 & 2 & -1 \\ 0 & 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \approx \begin{bmatrix} 1 & 2 & 3 & 0 & -5 \\ 0 & 0 & 1 & 0 & -5 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$
$$\approx \begin{bmatrix} 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$
$$\approx \begin{bmatrix} 1 & 2 & 0 & 0 & 10 \\ 0 & 0 & 1 & 0 & -5 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

This matrix is the reduced echelon form of the original augmented matrix. The corresponding system of equations is $x_1 + 2x_2 = 10$ $x_3 = -5$ $x_4 = 2$

Let $x_2 = r$. We get same solution as previously, $x_1 = -2r + 10, x_2 = r, x_3 = -5, x_4 = 2$