Первый признак равенства

Вопросы:

- 1. Определение смежных углов и их свойство.
- 2. Определение вертикальных углов и их свойство.
- 3. Определение равных фигур, биссектрисы угла.
- 4. Какой угол называется острым, прямым, тупым?
- 5. Определение треугольника, его элементов; определение периметра треугольника; определение равных треугольников.

Теорема

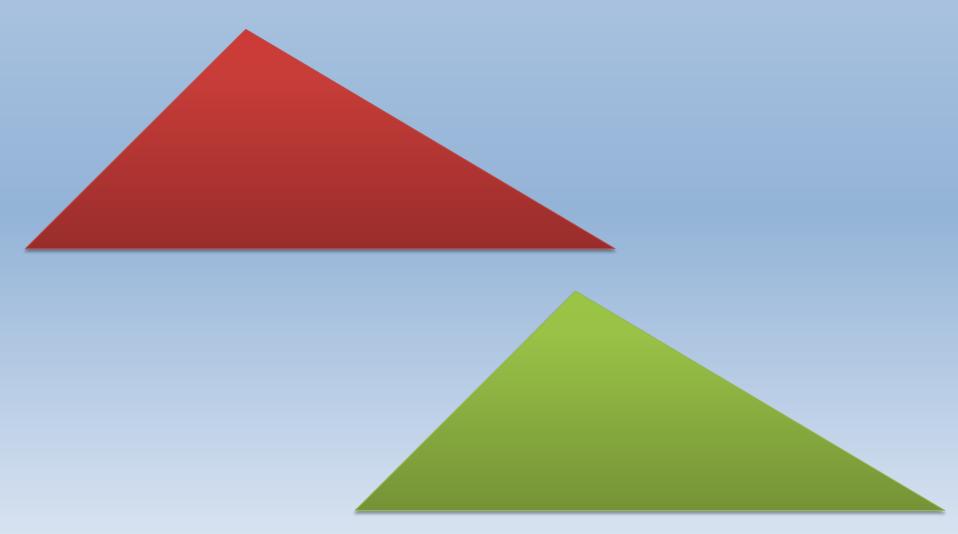
В геометрии каждое утверждение, справедливость которого устанавливается путем рассуждений, называется *теоремой*. а

сами рассуждения называются доказательством теоремы.

Приведенные ранее рассуждения о свойстве смежных и о равенстве вертикальных углов были доказательствами теорем, хотя мы

их еще так не называли.

Какие фигуры называются равными?



Равенство треугольников

Два треугольника называются равными, если каждой стороне и каждому углу в любом из них найдется равный элемент в другом.

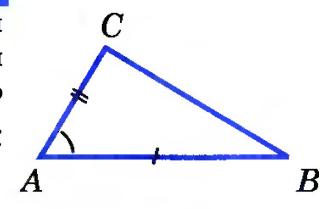
Теорема

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство

Рассмотрим треугольники ABC и $A_1B_1C_1$, у которых $AB=A_1B_1$, $AC=A_1C_1$, углы A и A_1 равны (рис. 51). Докажем, что $\triangle ABC=\triangle A_1B_1C_1$.

Так как $\angle A = \angle A_1$, то треугольник ABC можно наложить на треугольник $A_1B_1C_1$ так, что вершина A совместится с вершиной A_1 , а стороны AB и AC наложатся соответственно на лучи A_1B_1 и A_1C_1 . Поскольку $AB = A_1B_1$, $AC = A_1C_1$, то сторона AB совместится со стороной A_1B_1 , а сторона AC — со стороной A_1C_1 ; в частности, совместятся точки B и B_1 , C и C_1 . Следовательно, совместятся ся стороны BC и A_1C_1 . Итак, треугольники ABC и $A_1B_1C_1$ полностью совместятся, значит, они равны. **Теорема доказана**.



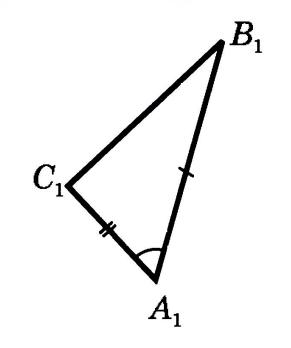
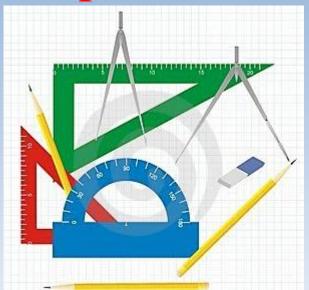


Рис. 51

Доказанная теорема выражает признак (равенство у треугольников двух сторон и угла между ними), по которому можно сделать вывод о равенстве треугольников. Он называется первым признаком

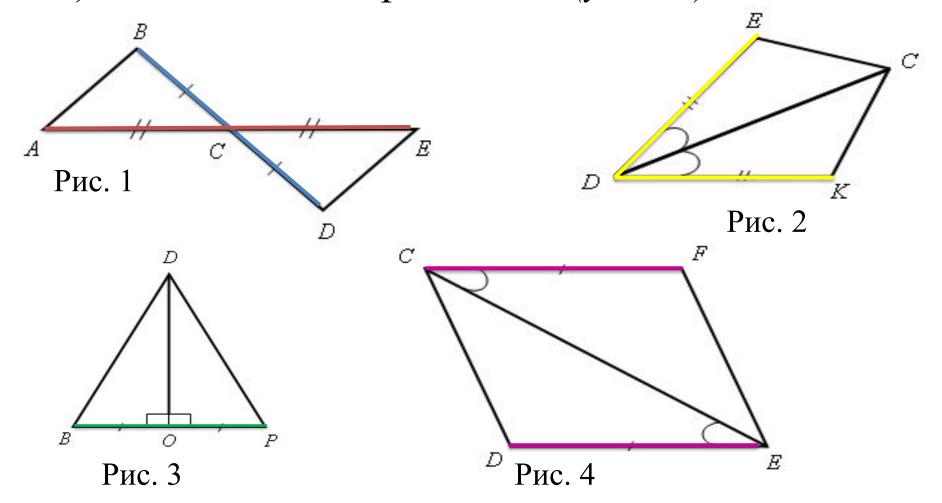
равенства треугольников.



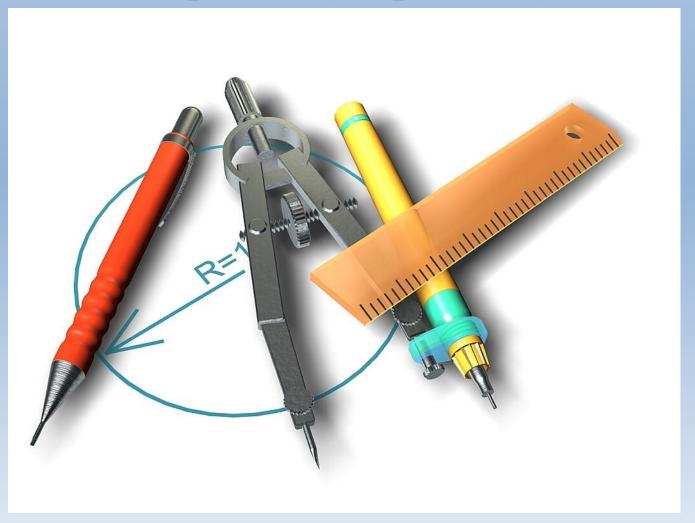
Доказанный признак дает возможность устанавливать равенство двух треугольников, не производя фактического наложения одного из них на другой, а сравнивая только некоторые элементы треугольника.

Задачи

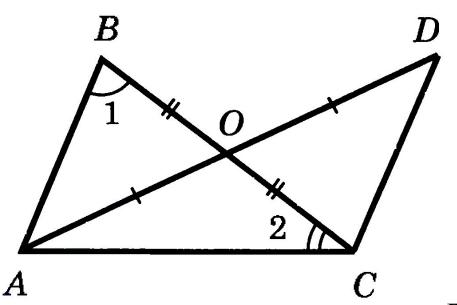
- 1. Найдите пары равных треугольников (см. рис.
- 1-4) и докажите их равенство (устно).



2. Решить задачу № 96 на доске и в тетрадях (по рис. 54).



Nº 96



Дано: OA=OD, OB=OC ∠1=74°, ∠2=36° Доказать: 1) ∆AOB=∆DOC 2) ∠ACD=?

Решение

Рассмотрим $\triangle AOB$ и $\triangle DOC$:

$$OA = OD$$
 (по условию)

$$OB = OC$$
 (по условию)

$$\angle AOB = \angle DOC$$
 (вертикальные углы равны)

 $\Delta AOB = \Delta DOC (I признак,$ равны по двум сторонам и углу между ними).

Тогда $\angle DCO = \angle ABO = 74^{\circ}$.

$$\angle ACD = \angle ACO + \angle DCO = 36^{\circ} + 74^{\circ} = 110^{\circ}.$$

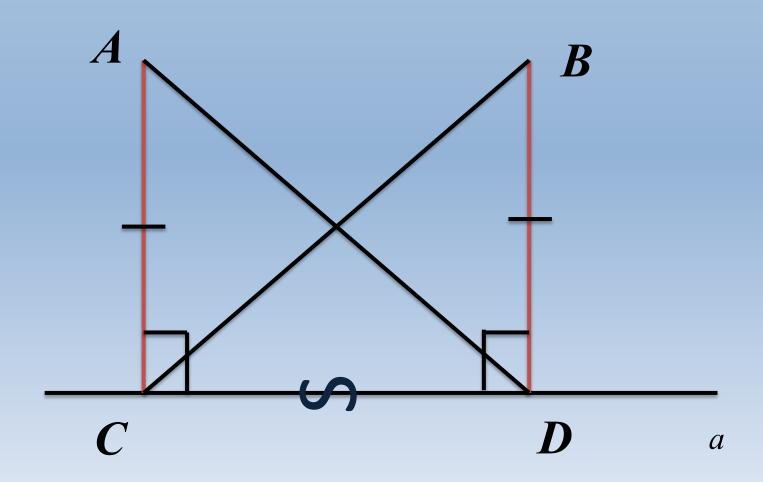
Ответ: 110°.

3. Самостоятельно решить задачу № 1: Из точек A и B на прямую a опущены перпендикуляры AC и BD, причем AC = BD. Докажите, что $_{\Lambda}ACD = _{\Lambda}BDC$.

Решение задачи № 1:

Из точек и B на прямую опущены перпендикуляры AC и BD, причем AC = BD.

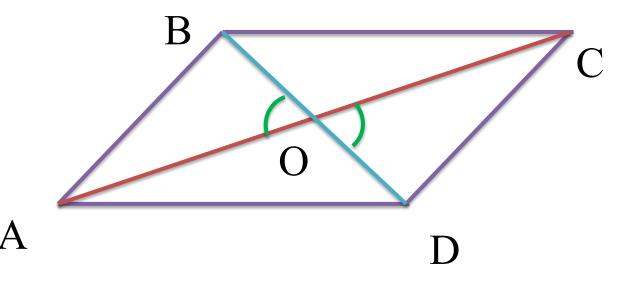
Докажите, что $\triangle ACD = \triangle BDC$.



4. Задача № 2.

Дано:
$$_{\Delta}$$
 AOB = $_{\Delta}$ COD.

Доказать:
$$_{\Delta}^{}$$
 BOC = $_{\Delta}^{}$ DOA.



Задание на с/п:

Знать доказательство первого признака

равенства треугольников п. 15, решить

задачи №№ 93, 94 и 95.

