
"Multirotor UAV in project 14.B37.21.1243"

Vyacheslav Barbasov, Pavel Orlov

Moscow State University of Geodesy and Cartography, Moscow, Russia

UAV developed in MIIGAiK

• SCB "Impulse"

• SCB "Krechet"

SCB "Krechet" is working on several platforms for use in cartographic monitoring

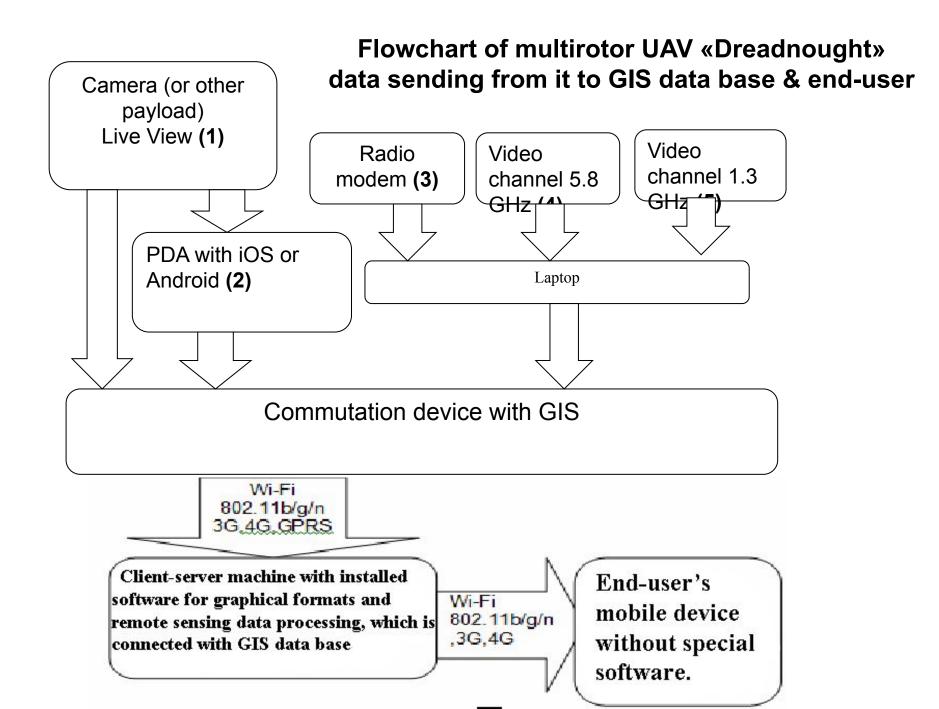
N⁰	Features	Krechet	Krechet			
		Aircraft	Aerostat			
1	Deployed size, length*width*height, mm	1800*1500*	2000*2000*			
		430	4000			
2	Transport size, length*width*height, mm	350*1500*	400*400*400			
		430				
3	Speed of level flight, km/h	40100	0max wind			
			speed			
4	Operating altitude, m	601000	0300			
5	Flight duration, min	Up to 50	Unlimited			
6	Maximum take-off weight, kg	3,5	8			
7	Maximum payload, kg	1,2	5			
8	Working temperature, °C	-25° +50°C	-20° +50°C			
-	J J J J J J J J J J					
9	Wind speed at launch, not more than, m/sec	8	12			
		. –				
10	Wind speed at an altitude of 300 m, not more	15	12			
	than, m/sec					
12	Size of landing area, not less than, m*m	2*30	3*3			
13	Servicemen	2-3	2-3			
		<u>∠</u> -0				
14	Engine (electric power), item		-			
			·			

Feature	Quadcopter "Schmidt"	Hexacopter "Juggernaut"	Octocopter Topocopter "Dreadnought"	
Deployed size, length×width×height, mm	350x350x270	825x825x325	1100×1100×450	
Transport size, length×width×height, mm	350x350x150	825x300x325	1100×1100×250	1 an
Speed of level flight, km/h	0÷55	0÷45	0÷50	
Operating altitude, m	5÷250	10÷350	10÷450	
Maximum altitude, km	2	2	2	
Flight duration, min	Up to 25	Up to 20	Up to 20	
Maximum take-off weight, kg	2,5	6	10	
Maximum payload, kg	0,8	2,5	4	Stational and Million
Take-off weight, kg	1,4	3	5	
Working temperature, °C	-25 ÷ +50	-20 ÷ +40	-25 ÷ +50	
Wind speed at launch, not more than, m/sec	6	8	10	
Wind speed at an altitude, not more than, m/sec	8	10	12	
Size of landing area, not less than, m*m	1×1	2×2	3×3	
Servicemen	1-2	1-2	2	
Engine (electric power), item	4	6	8	£
Additional route camera (resolution) (Control of the axes)	No	No	Yes, (752x582), (2 axes)	
Portable	No	Yes	No	
Application	Monitoring, security forces	Monitoring	Cartography, Monitoring	

and the

Multirotor UAV, which is developed in SCB MIIGAiK «Krechet», – octocopter «Dreadnought». This drone can be used to receive snapshots, applicable in map (or site plan) creating/updating, forming of digital terrain model, making 3D-models of buildings and objects, thermographic maps, panoramic surveying and also monitoring of natural and manmade emergencies development.

Functions & elements of ground control


When we use multirotor UAV in cartographic monitoring, it must be considered as a complex with its equipment (instrumentation) and payload. Its called UAS – Unmanned Aircraft System. UAS consist of payload and ground control. What is it for?

- Automatic flight control;
- Flight navigation;
- Flight task input and processing;
- Setting up a wireless link with an operator;
- Data receiving, processing and storage (Video and Telemetry);
- Input of UAV control signals.


Data, which is receiving by operators

What can you find in UAV payload?

- Digital camera (including Video camera)
- Thermographic camera
- IR-camera
- Radiolocation equipment (Sonar)
- Geiger counter

Examples of UAV "Dreadnought" survey: Altitude: 100 meters Camera: Canon 550D Camera lens: 18 mm Overlap: 65% Flight duration: 8 minutes Flight speed on a route: 5 meters/sec

Geodesic range

3D terrain model. Perspective view

Some tests were carried out in IR-survey

Survey of fires in Smolensk region, near town Gagarin, with wide-angle camera lens

The ways of multirotor UAV usage in environment monitoring:

- Cartographic monitoring
- Topographic survey
- Multispectral survey
- Thermographic survey
- Geology
- Cadastre (stereo image)
- Emergency control
- Tasks of agro-industrial complex
- Snapshots for 3D modeling
- Agriculture: control of farms & fields condition
- Ecological monitoring:
 - radiation;
 - chemical pollution;
 - bacteriological pollution.

Usage of results in studying & education

- Experience of UAV development, its usage and data processing embeds in educational program of MIIGAiK.
- One of the main tasks of our project (ГИОК ДЗЧС) is a development of special educational courses.