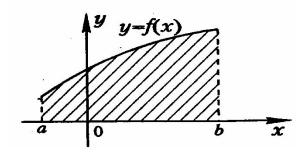
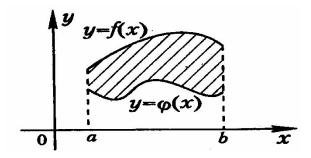
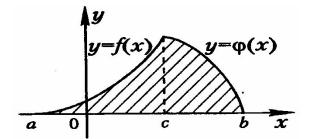


Тема урока: Применение интеграла к решению практических задач


Ответы к математической эстафете


1 ряд	2 ряд	3 ряд
1. $\frac{(7x+1)^4}{28} + c$	1. $\frac{(7x+1)^4}{28} + c$	16x+c
2. $\frac{(7x+1)^4}{28} + c$	$2. \frac{(7x+1)^4}{28} + c$	2. $\frac{(7x+1)^4}{28}$ + c
3. $\frac{(7x+1)^4}{28} + c$	3. $\frac{(7x+1)^4}{28} + c$	$3. \ \frac{(7x+1)^4}{28} + c$
4. $\frac{(7x+1)^4}{28}$ + c	4. $\frac{(7x+1)^4}{28} + c$	4. $\frac{(7x+1)^4}{28}$ + c
$5. \frac{(7x+1)^4}{28} + c$	$5. \ \frac{(7x+1)^4}{28} + c$	$5. \ \frac{(7x+1)^4}{28} + c$

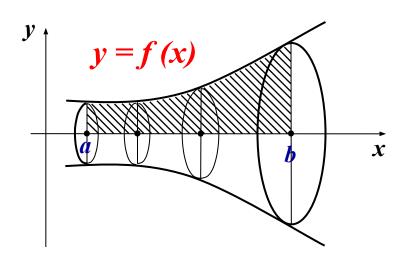
Вычисление площади криволинейной трапеции

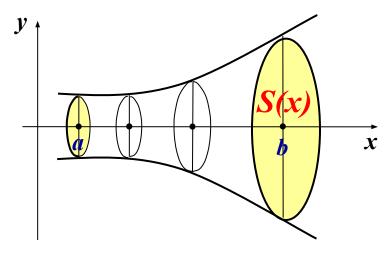


$$S = \int_{a}^{b} f(x) dx$$

$$S = \int_{a}^{b} (f(x) - \varphi(x)) dx$$

$$S = \int_{a}^{c} f(x)dx + \int_{c}^{b} \varphi(x)dx$$


Алгоритм решения задачи на вычисление площади плоской фигуры


- Сделать приблизительный график заданных функций, ограничивающих площадь плоской фигуры.
- Найти пределы интегрирования.
- Выбрать формулу для вычисления площади.
- Вычислить площадь заданной фигуры.

Два случая нахождения объемов тела

$$\frac{(7x+1)^4}{28}$$
 + c

$$\frac{(7x+1)^4}{28}$$
 + c

Алгоритм решения задачи на вычисление объемов тел

- Сделать приблизительный рисунок тела.
- Найти пределы интегрирования.
- Выбрать формулу для вычисления объема.
- Найти объем тела

Сравним:

Алгоритм решения задачи на вычисление площади плоской фигуры	Алгоритм решения задачи на вычисление объемов тел
Сделать приблизительный график заданных функций, ограничивающих площадь плоской фигуры.	Сделать приблизительный рисунок тела.
Найти пределы интегрирования.	Найти пределы интегрирования.
Выбрать формулу для вычисления площади.	Выбрать формулу для вычисления объема.
Вычислить площадь заданной фигуры.	Найти объем тела

Примеры практических задач

- 1. Скорость движения точки $V(t) = 9t^2 8t$ (м/с). Найти путь, пройденный точкой за 4-ю секунду.
- 2. По цепи идет переменный ток $I(t) = 6t t^2$ (A). Найти величину заряда прошедшего по цепи за первые 6 сек.
- 3. Вычислить количество электричества, протекающего по проводнику за промежуток времени [2;3], если сила тока задается формулой $I(t) = 3t^2-2t+5$
- 4. Вычислить работу за промежуток времени [3;9], если мощность вычисляется по формуле $N(t) = 5*\sqrt{t+t}$
- 5. Определить объем продукции, произведенной рабочим за третий час рабочего дня, если производительность труда характеризуется функцией f(t) = 1/(t+1)+4

Примеры решения задач

1. Тело брошено с поверхности земли вертикально вверх со скоростью V(t) = (39,2 - 9,8t) м/с. Найти наибольшую высоту подъема тела.

(Необходимо определить пределы интегрирования)

$$\frac{(7x+1)^4}{28} + c$$

Примеры решения задач

2. Пружина растягивается на 0,02 метра под действием силы в 60H. Какую работу необходимо произвести, растягивая пружину на 0.12 метра?

(Необходимо определить закон изменения силы растяжения)

$$\frac{(7x+1)^4}{28} + c$$

Карцева Ирина Алексеевна, преподаватель математики, ГБОУ СПО Колледж связи №54 г. Москва, 2013 г.

Составить задачи, используя известную зависимость между физическими величинами

Величины	Вычисление производной	Вычисление интеграла
m – масса тонкого стержня;ρ – линейная плотность.	$\rho(x) = m'(x)$	$\mathbf{m} = \int_{x_1}^{x_2} \rho(x) dx$
q — электрический заряд; I — сила тока.	I(t) = q'(t)	$\frac{(7x+1)^4}{28}$ + c
S -перемещение; V-скорость.	V(t) = S'(t)	$\frac{(7x+1)^4}{28}$ + c
A — работа; F — сила; N - мощность.	F(x) = A'(x) $N(t) = A'(t)$	$\frac{\frac{(7x+1)^4}{28} + c}{\frac{(7x+1)^4}{28} + c}$
$egin{aligned} Q - & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	c(t) = Q'(t)	$\frac{(7x+1)^4}{28}$ + c

Карцева Ирина Алексеевна, преподаватель математики, ГБОУ СПО Колледж связи №54 г. Москва, 2013 г.

Домашнее задание

Слайд 8 решить

"Математика – язык, на котором говорят все точные науки"

Н.И. Лобачевский