
Fast Casters – Project Update February 16, 2006

Rene Chen
Byron Hsu
Kimberly Kam
Kelsey Vandermeulen
Lisa Witmer

Objectives

- Progress since last update
- New project candidates
 - Technology of speed skate blade
 - 3-D printing of bone scaffolding

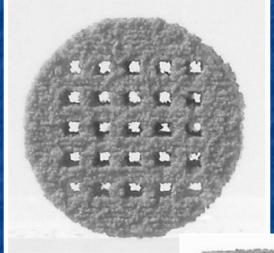
Important Material Characteristics in Speed Skates

Strong, resistant to wear

Low thermal conductivity

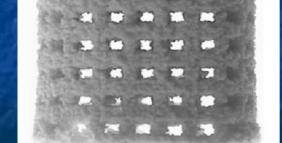
Able to be sharpened

Titanium vs. Steel Blade


- + Increased durability
 - + Needs to be sharpened less often
 - Sharpening takes time and may dull the tools

	Steel	Titanium
Thermal Conductivity [W/m-K]	15.2	6.7
Hardness, Vickers	153	349
Cost [USD/lbs.]	\$0.18	\$4.50

Challenges


- Analyzing advantages and difficulties of using a titanium blade
- Analyzing advantages of casting over forging or water jet cutting
- Finishing the blade

3D Printing of Hydroxyapatite Bone Scaffolds


Objective

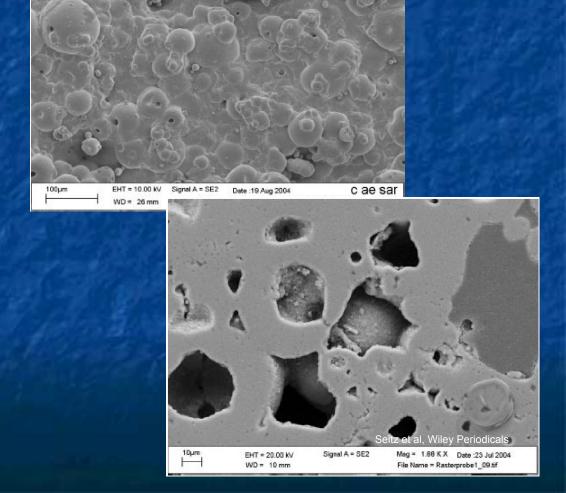
 3D porous hydroxyapatite scaffold for bone replacement customized from patient's CT scans

Seitz et al, Wiley Periodicals

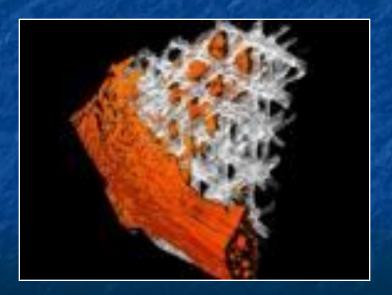
The Process

CT scan from patient

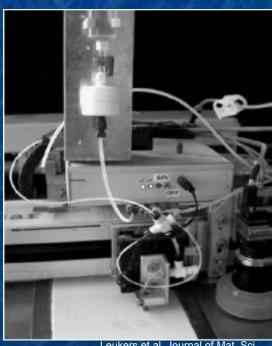
CAD image of bone replacement


Bone scaffold fabricated from 3D printer

Surgeons implant customized scaffold into patient


Requirements of HA Bone Scaffolds

- Porosity
- Strength
- Interconnected channels
- Channel size
- Biocompatibility
- Bone ingrowth



Hydroxyapatite

- $Ca_{10}(PO_4)_6(OH)_2$
- Chemically similar to the component of bones
- Supports bone ingrowth
- Biodegrades in the body over time
- HA in powder form

Why HA Bone Scaffolds Would Benefit from 3D Printing

Leukers et al. Journal of Mat. Sci

- Rapid prototyping
- Quick customization using CT scan of patient
- Complexity of scaffold

Challenges of 3D Printing Hydroxyapatite Scaffolds

- HA particle size
- Acceptable binder
 - polymeric
- Small enough size resolution
- Time constraints
- Sintering
 - Shrinkage
- Cell culture

The Game Plan

- Explore different combinations of hydroxyapatite and biocompatible materials
- Uniaxial tension/compression tests
- SEM imaging of microstructure
- Different channel geometries

Questions/Comments?

Backup/Extra Information

Material Candidates

- Spray-dried hydroxyapatite granulates with polymeric additives V5.2 and V12
- Polymeric binder Schelofix dissolved in water (10 and 14wt%)
- Hermann Seitz, "Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering", Wiley Periodicals, 2005.