Понятие системы трилинейных координат.
Рассмотрим применение геометрии к решению задач, в которых требуется разделить жидкость на определенные пропорции с помощью инструментов, казалось бы, непригодных для этого. Для решения нам понадобятся так называемые трилинейные координаты, которые мы сейчас и опишем.
Обычно для нанесения точек с заданными декартовыми координатами пользуются миллиметровой бумагой. Для наших целей лучше использовать триангулированную бумагу, т. е. бумагу, на которой проведены три системы параллельных линий, разбивающих ее на маленькие равносторонние треугольники. Нарисуем на такой бумаге большой равносторонний треугольник АВС со сторонами, проходящими по линиям сетки. Для произвольной точки Р в этой плоскости определим числа x, y, z как расстояния от этой точки до прямых ВС, СА и АВ соответственно, причем для каждой из этих прямых расстояние будем считать положительным, если точка лежит по ту же сторону от этой прямой, что и треугольник АВС, и отрицательным в противном случае. Полученную тройку чисел (x, y, z) будем называть трилинейными координатами точки Р относительно треугольника АВС. Заметим, что для точек, лежащих внутри треугольника АВС, все три координаты положительны. Кроме того, если а – длина стороны треугольника, а h – высоты(
), то
(ax+ay+az) = SPBC + SPCA + +SPAB = SABC =
ah, откуда следует, что x + y + z = h.
Трилинейные координаты чрезвычайно удобны для описания ситуации, в которой участвуют три переменные величины, имеющие постоянную сумму. Если одна из этих величин x, y или z остается постоянной, а две другие изменяются, то точка (x, y, z) движется по прямой, параллельной одной из сторон треугольника АВС. В частности, прямые, на которых лежат стороны ВС, СА и АВ, описываются уравнениями: x = 0, y = 0, z = 0, а вершины А, В, С имеют координаты (h, 0, 0), (0,h,0), (0, 0, h).