Содержание
- 2. Course outline Overview of machine learning (today) Classical supervised learning Linear regression, perceptrons, neural nets, SVMs,
- 3. Learning is…. … a computational process for improving performance based on experience Lecture 1 8/25/11 CS
- 4. Learning: Why? Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 5. Learning: Why? The baby, rushed by eyes, ears, nose, skin, and insides at once, feels it
- 6. Learning: Why? The baby, assailed by eyes, ears, nose, skin, and entrails at once, feels it
- 7. Learning: Why? Instead of trying to produce a programme to simulate the adult mind, why not
- 8. Structure of a learning agent Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 9. Design of learning element Key questions: What is the agent design that will implement the desired
- 10. Examples Supervised learning: correct answers for each training instance Reinforcement learning: reward sequence, no correct answers
- 11. Supervised learning To learn an unknown target function f Input: a training set of labeled examples
- 12. Supervised learning To learn an unknown target function f Input: a training set of labeled examples
- 13. Supervised learning To learn an unknown target function f Input: a training set of labeled examples
- 14. Example: object recognition x f(x) giraffe giraffe giraffe llama llama llama Lecture 1 8/25/11 CS 194-10
- 15. Example: object recognition x f(x) giraffe giraffe giraffe llama llama llama X= f(x)=? Lecture 1 8/25/11
- 16. Example: curve fitting Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 17. Example: curve fitting Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 18. Example: curve fitting Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 19. Example: curve fitting Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 20. Learning data Learning knowledge Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 21. Learning data Learning knowledge prior knowledge Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 22. Learning data Learning knowledge prior knowledge Lecture 1 8/25/11 CS 194-10 Fall 2011, Stuart Russell
- 24. Скачать презентацию
 Slaidy.com
 Slaidy.com





















 It’s winter. It is cold and sunny
 It’s winter. It is cold and sunny Food idioms
 Food idioms Guess the fruits!
 Guess the fruits! Films Adjectives
 Films Adjectives History and philosophy of science
 History and philosophy of science Might, could, needn't, should, shouldn't
 Might, could, needn't, should, shouldn't Clock Tower - irregular verbs
 Clock Tower - irregular verbs English lesson
 English lesson Dialog by phone
 Dialog by phone News report
 News report Тютчев Фёдор Иванович
 Тютчев Фёдор Иванович Present simple Do and Does
 Present simple Do and Does Презентация к уроку английского языка "The History of Alternative Rock" -
 Презентация к уроку английского языка "The History of Alternative Rock" -  There is. There are
 There is. There are Christmas Merry
 Christmas Merry Compound nouns and acronyms - сложные существительные и аббревиатуры
 Compound nouns and acronyms - сложные существительные и аббревиатуры Unit revision
 Unit revision Vocabulary food. Task 5
 Vocabulary food. Task 5 Reading - vocabularu
 Reading - vocabularu Where i want to study
 Where i want to study What would you do if
 What would you do if Present simple affirmative
 Present simple affirmative Present tense verb be: i and you + and ?
 Present tense verb be: i and you + and ? Answer these questions and explain your choice
 Answer these questions and explain your choice Distant lesson 7
 Distant lesson 7 Ravens of the Tower of London
 Ravens of the Tower of London Презентация на тему Past Progressive tense
 Презентация на тему Past Progressive tense  Презентация на тему Кроссворд “What Is This Animal Called"
 Презентация на тему Кроссворд “What Is This Animal Called"