Презентации, проекты, доклады в PowerPoint на любую тему

Презентация на тему Решение систем неравенств 8 класс
Презентация на тему Решение систем неравенств 8 класс
«Математика – наука о порядке» А. Уайтхед. Обучение математике через задачи – идея далеко не новая. Еще Ньютон сказал: «Примеры поучают больше, чем теория». Нужно разумно чередовать задачи, осуществляющие различную степень познавательной самостоятельности. Работа учителя всегда была и остается творческой. «Три пути ведут к знаниям: путь размышления- это путь самый благородный, путь подражания – это путь самый легкий и путь опыта- это путь самый горький». Конфуций. УМК к учебнику Ш. А. Алимова, Ю. М. Колягина и др. Тип урока: учебный практикум. Оборудование: магнитная доска, раздаточные таблицы, раздаточный дифференцированный материал для обучения и развития учащихся. Цели урока: 1. Систематизировать, расширить и углубить знания, умения учащихся применять различные способы решения систем неравенств и их комбинаций. 2. Уметь решать системы линейных неравенств и неравенств, сводящихся к линейным, извлекать необходимую информацию из учебно – научных текстов. 3. Знать о способах решения систем неравенств. 4. Способствовать развитию наблюдательности, умения анализировать, сравнивать, делать выводы. 5. Владеть навыками самоанализа, самоконтроля, побуждать учащихся к взаимоконтролю, вызывать у них потребность в обосновании своих высказываний.
Продолжить чтение
Презентация на тему Преобразование графиков. Тригонометрические функции. Алгебра и начала анализа. 10 класс
Презентация на тему Преобразование графиков. Тригонометрические функции. Алгебра и начала анализа. 10 класс
1. У = - f(x) ← y = f(x) , симметрия относительно оси ОХ. 2. У = f(- x) ← y = f(x), симметрия относительно оси ОУ. 3. У = - f (- x) ← y = f(x), симметрия относительно начала координат. 4. У = f(x – a) ← y = f(x),параллельным переносом вправо по ОХ, если а >0, влево по ОХ, если а < 0. 5. У = f(x) + b ← y = f(x), параллельным переносом вверх по ОУ, если в > 0, вниз по ОУ, если в < 0. 6. У = f(kx) ← y = f(x), растяжением в вдоль оси ОХ в 1/к раз, если 0 < к < 1; сжатием вдоль оси ОХ в к раз, если к > 1. 7. У = kf(x) ← y = f(x), сжатием вдоль оси ОУ в 1/к раз, если 0 < к < 1 и растяжением вдоль оси ОУ в к раз, если к > 1. 9. У = f(Ix I) ← y = f(x) строим график функции y = f(x) при х ≥ 0 и отображаем его относительно оси ОУ. 8. У = If(x)I – совпадает с у = f(x) в тех точках, которые лежат выше оси ОХ симметричен графику у = f(x) относительно оси абсцисс в остальных точках. Виды преобразований графиков- повторение и изучение новых знаний.
Продолжить чтение