Чебышев Пафнутий Львович

Содержание

Слайд 2

Биография

Чебышев о задачах
математики

Теория механизмов

Метод наименьших
квадратов

Детство,
образование

Работа по теории
чисел

Алгебраическая
теория чисел

Работа по теории
вероятности

заключение

Биография Чебышев о задачах математики Теория механизмов Метод наименьших квадратов Детство, образование

Слайд 3

Родился 4 мая 1821 года, Окатово, Калужская губерния — умер 26 ноября

Родился 4 мая 1821 года, Окатово, Калужская губерния — умер 26 ноября
1894года, Санкт-Петербург) — русский математик и механик. Почётный член Учебного Совета ИМТУ. Основатель Петербургской математической школы. Почетный член многих русских и иностранных научных обществ, академий, университетов.

ЧЕБЫШЕВ Пафнутий Львович

Слайд 4

Как было принято в дворянских семьях того времени, первоначальное образование П. Л.

Как было принято в дворянских семьях того времени, первоначальное образование П. Л.
Чебышев получает дома. В возрасте шестнадцати лет поступает в Московский университет. Его работа «Вычисление корней уравнений», представленная на объявленную факультетом тему, удостаивается серебряной медали. В том же 1841 Чебышев заканчивает Московский университет, в котором в 1846 защищает магистерскую диссертацию «Опыт элементарного анализа теории вероятностей».

Детство, образование

Слайд 5

В 1841 году в России случился голод, и семья Чебышева не могла

В 1841 году в России случился голод, и семья Чебышева не могла
больше его поддерживать. Однако Пафнутий Львович был полон решимости продолжить свои занятия. Он успешно заканчивает университет и защищает диссертацию.
В 1847 году Чебышев утверждён в звании доцента и начинает читать лекции по алгебре и теории чисел в Петербургском университете.
В 1850 году Чебышев защищает докторскую диссертацию и становится профессором Петербургского университета. Эту должность он занимал до старости.

Слайд 6

В 1863 году особая «Комиссия Чебышева» принимала деятельное участие от Совета Санкт-Петербургского

В 1863 году особая «Комиссия Чебышева» принимала деятельное участие от Совета Санкт-Петербургского
университета в разработке Университетского устава. Университетский устав, подписанный Александром II 18 июня 1863 года, предоставлял автономию университету как корпорации профессоров. Этот устав просуществовал до эпохи контрреформ правительства Александра III и рассматривался историками как наиболее либеральный и удачливый университетский регламент в России XIX — начала XX веков.

П. Л. Чебышев скончался 8 декабря 1894 года за письменным столом. Погребён в родном имении в селе Спас-Прогнанье, которое находится в 90 км от Москвы.

Слайд 7

В научном творчестве П. Л. Чебышева практические работы были неразрывно связаны с

В научном творчестве П. Л. Чебышева практические работы были неразрывно связаны с
высокой наукой и проистекали из философской установки, которую он с наибольшей полнотой сформулировал в докладе «Черчение географических карт» на торжественном акте 8 февраля 1856 в Петербургском университете:

Чебышев о задачах математики

«Науки математические с самой глубокой древности обращали на себя особенное внимание; в настоящее время они получили еще больше интерес по влиянию своему на искусства и промышленность. Сближение теории с практикой дает самые благоприятные результаты, и не только одна практика от этого выигрывает; сами науки развиваются под влиянием ее: она открывает им новые предметы для исследований или новые стороны в предметах, давно известных. Несмотря на ту высокую степень развития, до которой доведены науки математические трудами великих геометров трех последних столетий, практика обнаруживает ясно неполноту их во многих отношениях; она предлагает вопросы существенно новые для науки и таким образом вызывает на изыскание совершенно новых методов…».

Слайд 8

Теория механизмов

Во время заграничной командировки в мае-октябре 1852 г. (во Францию, Англию

Теория механизмов Во время заграничной командировки в мае-октябре 1852 г. (во Францию,
и Германию) Чебышев знакомится с регулятором парового двигателя — параллелограммом Джеймса Уатта. В «Отчете экстраординарного профессора С.-Петербургского университета Чебышева о путешествии за границу» об этом говорится следующее:

«Из многих предметов исследования, которые представились мне при рассматривании и сличении между собой различных механизмов передачи движения, особенно в паровой машине, где и экономия в топливе, и прочность машины много зависят от способов передачи работы пара, я особенно занялся теориею механизмов, известных под названием параллелограммов. Изыскивая различные средства извлекать из пара наиболее работы в том случае, когда нужно иметь вращательное движение, как это большею частью бывает, Уатт изобрел особенный механизм для превращения прямолинейного движения поршня во вращательное (движение) коромысла — механизм, известный под названием параллелограмм…».

Слайд 9

«Из истории практической механики известно только, что на мысль о возможности подобного

«Из истории практической механики известно только, что на мысль о возможности подобного
механизма великий преобразователь паровых машин и был наведен рассматриванием особенного снаряда, где через совокупление различных вращательных движений получались разнообразные кривые линии, некоторые близкие к прямой. Но мы не знаем, каким путем он дошел до наивыгоднейшей формы своего механизма и размера его элементов. Правила, которым следовал Уатт при устройстве параллелограммов, могли служить руководством для практики только до тех пор, пока не встретилась необходимость изменить форму его; с изменением формы этого механизма потребовались новые правила. Эти правила и практика, и современная теория извлекают из начала, которому, по-видимому, следовал Уатт при устройстве своих параллелограммов…».

Суждения, которые приводят в доказательство этого начала, очевидно, не могут выдержать никакой критики; даже на практике очень часто оказывается неудобным употреблять элементы параллелограммов, необходимые по этому началу, так что для поправки их понадобились особые таблицы. Из сказанного мною видно, до какой степени необходимо было параллелограмм Уатта и его видоизменения подвергнуть строгому анализу, заменивши вышеупомянутое начало существенными свойствами этого механизма и условиями, которые встречаются на практике.

Слайд 10

«С этой целью я, обращал особенное внимание на обстоятельства, которыми условливаются некоторые

«С этой целью я, обращал особенное внимание на обстоятельства, которыми условливаются некоторые
из его элементов как в машинах фабричных, так и на пароходах, а с другой стороны — на вредные действия неправильностей его хода, которых следы можно заметить на машинах, бывших долго в употреблении. Предположивши вывести правила для устройства параллелограммов прямо из свойств этого механизма, я встретил вопросы анализа, о которых до сих пор знал очень мало. Все, что сделано в этом отношении,принадлежит члену Парижской академии г-ну Понселе, известному ученому в практической механике; формулами, им найденными, пользуются очень много при вычислении вредных сопротивлений машин. Для теории параллелограмма Уатта необходимы формулы более общие и приложение их не ограничивается исследованием этих механизмов.
В практической механике и других прикладных науках есть целый ряд вопросов, для решения которых они необходимы…».

Слайд 11

Для Чебышева, углубленно размышлявшего над проблемами математической теории параллелограммов, особый интерес

Для Чебышева, углубленно размышлявшего над проблемами математической теории параллелограммов, особый интерес представляли
представляли машины, изготовленные под непосредственным руководством Джеймса Уатта. Счастливый случай, которого Чебышев настойчиво искал, представился вскоре после прибытия в Англию. В «Отчете» об этом рассказывается так:

«По приезде в Лондон я обратился к двум известным английским геометрам Сильвестру и Кэли. Расположению этих ученых я обязан, с одной стороны, интересными беседами по различным отраслям математики, на что употреблял я вечера и воскресные дни, в продолжение которых все фабрики закрыты, а с другой стороны, случаем познакомиться с известным английским инженером-механиком Грегори. Узнавши о цели моего путешествия и, в особенности о тех вопросах практической механики, решение которых составляло предмет моих занятий, он вызвался содействовать мне в отыскании на лондонских фабриках предметов, наиболее для меня необходимых. С этой целью он ездил со мною на различные фабрики, где полагал найти различные машины, устроенные самим Уаттом...

…Эти машины были особенно интересны для меня как данные о правилах, которым следовал Уатт при устройстве своих параллелограммов, правила, с которыми я должен был сравнивать результаты моих изысканий, упомянутых выше. К сожалению, оказалось, что одна из самых старинных машин Уатта, долго сохранявшаяся была, продана в лом; но г-н Грегори успел найти две машины, которые, как видно по патентам, были совсем недавно переделаны Уаттом и сохраняются теперь как достопамятность».

Слайд 12

Результаты своих изысканий П.Л.Чебышев изложил в обширном мемуаре «Теория механизмов, известных под

Результаты своих изысканий П.Л.Чебышев изложил в обширном мемуаре «Теория механизмов, известных под
названием параллелограммов» (1854 г.), заложив основы одного из наиболее важных разделов конструктивной теории функций — теории наилучшего приближения функций. Именно в этой работе П.Л.Чебышев ввел ортогональные многочлены, носящие ныне его имя. Помимо приближения алгебраическими многочленами, П.Л.Чебышев рассматривал приближение тригонометрическими многочленами и рациональными функциями.

Слайд 13

…«Если теория много выигрывает от новых приложений старой методы или от новых

…«Если теория много выигрывает от новых приложений старой методы или от новых
развитий ее, то она еще более приобретает открытием новых метод, и в этом случае науки находят себе верного руководителя в практике.
Практическая деятельность человека представляет чрезвычайное разнообразие, и для удовлетворения всех ее требований, разумеется, недостает науке многих и различных методов. Но из них особенную важность имеют те, которые необходимы для решения различных видоизменений одной и той же задачи, общей для всей практической жизни человека: как располагать средствами своими для достижения по возможности большей выгоды.?»

П. Л. Чебышеву принадлежит создание свыше 40 различных механизмов и около 80 их модификаций. В истории развития науки о машинах нельзя указать ни одного учёного, творчеству которого принадлежало бы столь значительное количество оригинальных механизмов. Но П. Л. Чебышев решал не только задачи синтеза механизмов. Он на много лет раньше других учёных выводит знаменитую структурную формулу плоских механизмов, которая только по недоразумению носит название формулы Грюблера - немецкого учёного, открывшего её на 14 лет позднее Чебышева.

Слайд 14

П. Л. Чебышев, независимо от Робертса, доказывает знаменитую теорему о существовании трёхшарнирных

П. Л. Чебышев, независимо от Робертса, доказывает знаменитую теорему о существовании трёхшарнирных
четырёхзвенников, описывающих одну и ту же шатунную кривую, и широко использует эту теорему для целого ряда практических задач. Научное наследство П. Л. Чебышева в области теории механизмов содержит такое богатство идей, которое рисует облик великого математика подлинным новатором техники. Для истории математики особенно важно то, что конструирование механизмов и разработка их теории послужили П. Л. Чебышеву исходной точкой для создания нового раздела математики - теории наилучшего приближения функций многочленами.

Слайд 15

Здесь П. Л. Чебышев явился пионером в полном смысле этого слова, совершенно

Здесь П. Л. Чебышев явился пионером в полном смысле этого слова, совершенно
не имея предшественников. Это - область, где он работал больше, чем в какой-либо другой, находя и решая всё новые и новые задачи и создав совокупностью своих исследований новую обширную ветвь математического анализа, продолжающую успешно развиваться и после его смерти. Первоначальная и простейшая постановка задачи имела началом исследование параллелограмма Уатта и заключалась в том, чтобы найти многочлен данной степени, который меньше, чем все остальные многочлены той же степени, уклонялся бы от нуля в некотором заданном промежутке изменения аргумента.

Такие многочлены П. Л. Чебышевым были найдены и получили название "полиномов Чебышева". Они обладают многими замечательными свойствами и в настоящее время служат одним из наиболее употребительных орудий исследования во многих вопросах математики, физики и техники.

Слайд 16

Метод наименьших квадратов

От задачи построения многочленов, наименее уклоняющихся от нуля, Чебышев перешел

Метод наименьших квадратов От задачи построения многочленов, наименее уклоняющихся от нуля, Чебышев
к построению общей теории ортогональных многочленов, исходя из задачи интегрирования с помощью парабол по методу наименьших квадратов.
Работа в артиллерийском отделении военно-ученого комитета, членом которого длительное время состоял Чебышев, привела к необходимости решения некоторых задач, связанных с квадратурными формулами [им посвящена работа «О квадратурах» (1873 г.)] и теорией интерполяции.

Слайд 17

В теории чисел Чебышев стал основоположником русской школы,славу которой составили работы его

В теории чисел Чебышев стал основоположником русской школы,славу которой составили работы его
учеников Г. Ф. Вороного, Е. И. Золотарева,А. Н. Коркина,А. А. Маркова. Чебышеву удалось получить важные результаты в решении проблемы распределения простых чисел — уточнить количество простых чисел, не превосходящих данное число x [«Об определении числа простых чисел, не превосходящих данной величины» (1849 г.); «О простых числах» (1852 г.)]. В работе «Об одном арифметическом вопросе» (1866) Чебышев рассмотрел вопрос о приближении чисел рациональными числами, сыгравшими важную роль в становлении теории диофантовых приближений.

Работы по теории чисел

Слайд 18

Элементарная теория чисел
В элементарной теории чисел целые числа изучаются без использования методов

Элементарная теория чисел В элементарной теории чисел целые числа изучаются без использования
других разделов математики. Такие вопросы, как делимость целых чисел, алгоритм Евклида для вычисления наибольшего общего делителя и наименьшего общего кратного, разложение числа на простые множители, построение магических квадратов, совершенные числа, числа Фибоначчи, малая теорема Ферма, теорема Эйлера, задача о четырёх кубах относятся к этому разделу.

Теория чисел или высшая арифметика — раздел математики, изучающий целые числа и сходные объекты. В зависимости от используемых методов теорию чисел подразделяют на несколько подтеорий.

Слайд 19

В аналитической теории чисел для вывода и доказательства утверждений о числах и

В аналитической теории чисел для вывода и доказательства утверждений о числах и
числовых функциях используется мощный аппарат математического анализа. Большую роль в аналитической теории чисел играет метод тригонометрических сумм, позволяющий оценивать число решений тех или иных уравнений или систем уравнений в целых числах. Основы метода тригонометрических сумм разработал и впервые применил к задачам теории чисел И. М. Виноградов.
Первым успехом аналитической теории чисел было применение комплексного анализа в доказательстве теоремы о распределении простых чисел.
Наиболее известной и до сих пор не решенной проблемой аналитической теории чисел является доказательство гипотезы Римана о нулях дзета-функции, утверждающей, что все нетривиальные корни уравнения ζ(s) = 0 лежат на так называемой
критической прямой , где ζ(s) — дзета-функция Римана.

Аналитическая теория чисел

Слайд 20

В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают

В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают
корни многочленов с рациональными коэффициентами. При этом аналогом целых чисел выступают целые алгебраические числа, то есть корни унитарных многочленов с целыми коэффициентами. В отличие от целых чисел в кольце целых алгебраических чисел не обязательно выполняется свойство факториальности, то есть, единственности разложения на простые множители.
Алгебраическая теория чисел включает в себя такие разделы, как теорию дивизоров, теорию Галуа, теорию полей классов, дзета- и L-функции Дирихле, когомологии групп и многое другое.
Одним из основных приёмов является вложение поля алгебраических чисел в своё пополнение по какой-то из метрик — архимедовой (например, в поле вещественных или комплексных чисел) или неархимедовой (например, в поле p-адических чисел).

Алгебраическая теория чисел

Слайд 21

Работы по теории вероятностей

Работы Чебышева по теории вероятностей [«Опыт элементарного анализа теории

Работы по теории вероятностей Работы Чебышева по теории вероятностей [«Опыт элементарного анализа
вероятностей» (1845 г.); «Элементарное доказательство одного общего положения теории вероятностей» (1846 г.); «О средних величинах» (1867 г.); «О двух теоремах относительно вероятностей» (1887 г.)] ознаменовали важный этап в развитии теории вероятностей. П.Л.Чебышев стал систематически использовать случайные величины. Им доказаны неравенство, носящее ныне имя Чебышева, и — в весьма общей форме — закон больших чисел.
В 1944 г. Академией наук учреждена премия имени П.Л.Чебышева.

Слайд 22

История

Возникновение теории вероятностей как науки относят к средним векам и первым попыткам

История Возникновение теории вероятностей как науки относят к средним векам и первым
математического анализа азартных игр (орлянка, кости, рулетка). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях. Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Исследуя прогнозирование выигрыша в азартных играх, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности, возникающие при бросании костей.

Слайд 23

Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался

Под влиянием поднятых и рассматриваемых ими вопросов решением тех же задач занимался
и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был, поэтому методику решения изобрёл самостоятельно. Его работа, в которой вводятся основные понятия теории вероятностей (понятие вероятности как величины шанса; математическое ожидание для дискретных случаев, в виде цены шанса), а также используются теоремы сложения и умножения вероятностей (не сформулированные явно), вышла в печатном виде на двадцать лет раньше (1657 год) издания писем Паскаля и Ферма (1679 год).

Слайд 24

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона

Важный вклад в теорию вероятностей внёс Якоб Бернулли: он дал доказательство закона
больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышев, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.
Имя файла: Чебышев-Пафнутий-Львович.pptx
Количество просмотров: 965
Количество скачиваний: 14