ЧИСЛЕННОЕ КОНФОРМНОЕ ОТОБРАЖЕНИЕ В ДВУМЕРНОЙ ГИДРОДИНАМИКЕ И СМЕЖНЫЕ ПРОБЛЕМЫ ЭЛЕКТРОДИНАМИКИ И ТЕОРИИ УПРУГОСТИ

Содержание

Слайд 2

Доклад является представлением одноименной монографии
Б.И. Рабиновича и Ю.В. Тюрина, выходящей в

Доклад является представлением одноименной монографии Б.И. Рабиновича и Ю.В. Тюрина, выходящей в
ИКИ на английском
языке в этом году. Описывается оригинальный численный алгоритм конформного отображения (RT-алгоритм), основанный на двух процедурах (R-процедуре и T-процедуре). Решение проблемы, достигаемое этим методом, охватывает произвольные односвязные и двусвязные области с кусочно-гладкими контурами. RT-алгоритм используется для построения ортогональных сеток и для решения широкого спектра внешних и внутренних двумерных задач гидродинамики, а также некоторых смежных задач электродинамики и теории упругости. В качестве основных инструментов для решения краевых задач на преобразованной области (единичный круг, круговое кольцо, область, ограниченная прямоугольником) применяются методы рядов Тейлора и Лорана, Ритца, конечных элементов, сопряженных вихрей. Все эти методы реализуются в виде программного обеспечения на PC, а результаты представляются средствами машинной графики. Для проверки получаемых численных результатов используются, когда это возможно, аналитические решения, решения, полученные другими численными методами, а также экспериментальные результаты.

ЧИСЛЕННОЕ КОНФОРМНОЕ ОТОБРАЖЕНИЕ
В ДВУМЕРНОЙ ГИДРОДИНАМИКЕ И СМЕЖНЫЕ ПРОБЛЕМЫ ЭЛЕКТРОДИНАМИКИ И ТЕОРИИ УПРУГОСТИ

2

Слайд 3

NUMERICAL METHODS IN FLUID MECHANICS

Boris I. Rabinovich and Yuri V. Tyurin

Numerical Conformal

NUMERICAL METHODS IN FLUID MECHANICS Boris I. Rabinovich and Yuri V. Tyurin
Mapping
in
Two-Dimensional Hydrodynamics

SPACE RESEARCH INSTITUTE RUSSIAN ACADEMY OF SCIENCES

Слайд 4

Numerical Conformal Mapping in Two-Dimensional Hydrodynamics & Related Problems of Electrodynamics and Elasticity Theory

by

Numerical Conformal Mapping in Two-Dimensional Hydrodynamics & Related Problems of Electrodynamics and

Boris I. Rabinovich and Yuri V. Tyurin

English text edited by Djosef Cherniawsky, PhD,
Program implementation of the RT-algorithm, the numerical
solutions and their graphical representation has been developed
by Yuri Tyurin, PhD, Rudolf Ashkinazy, Alexander Leviant, PhD,
Arcadi Livshits, PhD, Eugeni Sokolin PhD

4

Слайд 5

Acknowledgements

The authors take this opportunity to express deep gratitude to their colleagues

Acknowledgements The authors take this opportunity to express deep gratitude to their
mentioned above for creatively purposefully carrying out this complex task. Their role can scarcely be exaggerated.
The authors thanks Alexander Rabinovich for the great assistance in composing references on the numerical methods for conformal mapping, as well as Boris Kruglov and Yuri Shilov for their help in translation the manuscript into English and Josef Cherniawsky - for his productive comments on the manuscript.
The authors also would like to thank Natalia Komarova for her careful editing the camera-ready version of the book.

5

Слайд 6

Chapter 1 Lavrentiev Variational Principle and Auxiliary Transformations

Lavrentiev variational principle and representation
of

Chapter 1 Lavrentiev Variational Principle and Auxiliary Transformations Lavrentiev variational principle and
mapping functions by Taylor and Laurent series. Construction of the image of variation of an arbitrary contour on a unit circle. Preliminary analytical transforms. General formulation of linear boundary-value problems for simply and doubly connected domains.

6

Слайд 7

Chapter 2 RT-Algorithm for Conformal Mapping of an Arbitrary Domain onto the Unit

Chapter 2 RT-Algorithm for Conformal Mapping of an Arbitrary Domain onto the
Circle and of a Doubly Connected Domain onto the Annulus

General idea and informal description of the RT-algorithm. Mapping of a quasi-circular domain
onto a circle (R-procedure). Mapping of an arbitrary simply connected domain onto the unit circle and
of a doubly connected domain onto the annulus
(T-procedure). Convergence of the RT-algorithm. Methodological examples.

7

Слайд 8

Construction on the unit circle of function variations characterising contour deviation from

Construction on the unit circle of function variations characterising contour deviation from
a circle

Interior problem

Exterior problem

8

Слайд 9

RT-algorithm. Conformal map example

Double connected domain. Inverse mapping

Joukowski transform

RT- algorithm

a

9

RT-algorithm. Conformal map example Double connected domain. Inverse mapping Joukowski transform RT- algorithm a 9

Слайд 10

Chapter 3 Exterior problems of Hydrodynamics

Two-dimensional flow problems: Complex potential and formulas of

Chapter 3 Exterior problems of Hydrodynamics Two-dimensional flow problems: Complex potential and
Blasius-Chaplygin and Kutta-Joukowski. Electrostatic and magnetostatic analogies. Complex potentials. Examples of electric and magnetic fields. Unsteady two-dimensional motion of a contour without circulation. Solution of a boundary-value problem for complex potentials. Circulatory flow past two contours. Flow about a contour near a rectilinear boundary. A wing in motion near the ground. General problem on the flow around two contours. Vortices in the Jovian atmosphere. Slatted wing. Generalization to multiply connected domains. Flow about a lattice made of a single row of contours. Airfoil cascade. Flow around a contour with two sharp edges in the presence of two free vortices. Conjugate-vortex method.

10

Слайд 11

Aerodynamic problems

11

Aerodynamic problems 11

Слайд 12

Potential Flow with two Vortices around the Arc

Hydrodynamic problem

12

Potential Flow with two Vortices around the Arc Hydrodynamic problem 12

Слайд 13

Magnetostatic problem - conformal mapping

RT- algorithm

Linear fractal transform

13

Magnetostatic problem - conformal mapping RT- algorithm Linear fractal transform 13

Слайд 14

Chapter 4 Interior problems of Hydrodynamics

Stokes-Joukowski problem. Interior boundary-value problems of fluid

Chapter 4 Interior problems of Hydrodynamics Stokes-Joukowski problem. Interior boundary-value problems of
dynamics for moving cavities. Two-dimensional boundary-value problems. Complex velocity potential and associated moments of inertia of liquid. The Saint-Venant problem as an analogue of the two-dimensional Stokes-Joukowski problem. Examples of solving to the Stokes-Joukowski and Saint-Venant problems. The axisymmetric cavity. Prediction of circulatory flows of liquid in closed domains. An example of calculating of the associated moment of inertia in the presence of local vortex regions.

14

Слайд 15

Fluid stream in the rotating tank
or the torsion of an elliptical

Fluid stream in the rotating tank or the torsion of an elliptical bar A 15
bar

A

15

Слайд 16

Rotation of the circular tank with two inner ribs

16

Rotation of the circular tank with two inner ribs 16

Слайд 17

Without Vortices

With Vortices

Rotation of the circular tank with two inner ribs

Stream lines

17

Without Vortices With Vortices Rotation of the circular tank with two inner ribs Stream lines 17

Слайд 19

Torsion of the beam of cross-shape section

19

Torsion of the beam of cross-shape section 19

Слайд 20

Torsion of the shaft with sectarian cut

20

Torsion of the shaft with sectarian cut 20

Слайд 21

Torsion of the castellated hollow shaft

21

Torsion of the castellated hollow shaft 21

Слайд 22

RT- algorithm

Joukowski transform

22

RT- algorithm Joukowski transform 22

Слайд 23

RT- algorithm

Joukowski transform

23

RT- algorithm Joukowski transform 23

Слайд 24

Joukowski transform

RT- algorithm

algorithm

24

Joukowski transform RT- algorithm algorithm 24

Слайд 27

Sequential phase of the construction of conformal mapping and the grid conformally

Sequential phase of the construction of conformal mapping and the grid conformally
equivalent to a polar grid with a cut

27

Слайд 28

Torsion of the parallelogram bar

RT- algorithm

a

28

Torsion of the parallelogram bar RT- algorithm a 28

Слайд 29

Torsion of the parallelogram bar

29

Torsion of the parallelogram bar 29

Слайд 30

Chapter 5 Liquid Sloshing in Cavities

Boundary-value problems of fluid dynamics in cavities

Chapter 5 Liquid Sloshing in Cavities Boundary-value problems of fluid dynamics in
and equations of disturbed motion of the body-liquid system. Natural oscillations of a liquid within vertical cylindrical cavities. Model problems. Oscillations of liquid in cavities in the form of bodies of revolution. Natural oscillations of liquid in horizontal cylindrical cavities. Shallow water approximation. Numerical experiments. Certain generalisations

30

Слайд 32

Simply connected domain with inner cut
Inverse mapping

i

32

Simply connected domain with inner cut Inverse mapping i 32

Слайд 34

Simply connected domain with inner cut
Inverse mapping

i

34

Simply connected domain with inner cut Inverse mapping i 34

Слайд 36

Seiches: The Caspian sea - conformal mapping

Simply connected domain with inner cut

Seiches: The Caspian sea - conformal mapping Simply connected domain with inner
Inverse mapping

i

36

Слайд 37

Seiches: The Caspian sea - normal modes

37

Seiches: The Caspian sea - normal modes 37

Слайд 38

Conclusions

The Notation

Table 1
The methods used for solution of the boundary-value problems

38

Conclusions The Notation Table 1 The methods used for solution of the boundary-value problems 38

Слайд 39

Table 2 Typical accuracy characteristics of numerical computations using the RT-algorithm of conformal

Table 2 Typical accuracy characteristics of numerical computations using the RT-algorithm of conformal mapping 39
mapping

39

Слайд 40

NUMERICAL METHODS IN FLUID MECHANICS

SPACE RESEARCH INSTITUTE RUSSIAN ACADEMY OF SCIENCES

NUMERICAL METHODS IN FLUID MECHANICS SPACE RESEARCH INSTITUTE RUSSIAN ACADEMY OF SCIENCES
Имя файла: ЧИСЛЕННОЕ-КОНФОРМНОЕ-ОТОБРАЖЕНИЕ-В-ДВУМЕРНОЙ-ГИДРОДИНАМИКЕ-И-СМЕЖНЫЕ-ПРОБЛЕМЫ-ЭЛЕКТРОДИНАМИКИ-И-ТЕОРИИ-УПРУГОСТИ.pptx
Количество просмотров: 173
Количество скачиваний: 2