Основные понятия теории вероятности

Содержание

Слайд 2

Предмет теории вероятностей.

Теория вероятностей изучает закономерности, возникающие в случайных экспериментах.
Случайным

Предмет теории вероятностей. Теория вероятностей изучает закономерности, возникающие в случайных экспериментах. Случайным
называют эксперимент, результат которого нельзя предсказать заранее.
Невозможность предсказать результат отличает случайное явление от детерминированного.

Слайд 3

Предмет теории вероятностей.

Не все случайные явления (эксперименты) можно изучать методами теории

Предмет теории вероятностей. Не все случайные явления (эксперименты) можно изучать методами теории
вероятностей, а лишь те, которые могут быть воспроизведены в одних и тех же условиях.

Слайд 4

Предмет теории вероятностей.

И в случайных экспериментах наблюдаются некоторые закономерности, например свойство

Предмет теории вероятностей. И в случайных экспериментах наблюдаются некоторые закономерности, например свойство
«статистической устойчивости»: если A — некоторое событие, могущее произойти или не произойти в результате эксперимента, то доля n(A) /n экспериментов, в которых данное событие произошло, имеет тенденцию стабилизироваться с ростом общего числа экспериментов n, приближаясь к некоторому числу P(A).

Слайд 5

Пространство элементарных исходов.

Определение 1. Пространством элементарных исходов («омега») называется множество, содержащее все

Пространство элементарных исходов. Определение 1. Пространством элементарных исходов («омега») называется множество, содержащее
возможные результаты данного случайного эксперимента, из которых в эксперименте происходит ровно один. Элементы этого множества называют элементарными исходами и обозначают буквой («омега»).

Слайд 6

Пространство элементарных исходов.

Определение 2. Событиями мы будем называть подмножества множества Говорят, что

Пространство элементарных исходов. Определение 2. Событиями мы будем называть подмножества множества Говорят,
в результате эксперимента произошло событие если в эксперименте произошел один из элементарных исходов, входящих в множество

Слайд 7

Пространство элементарных исходов.

Пространство элементарных исходов.

Слайд 8

Пространство элементарных исходов.

Определение 3.
1. Достоверным называется событие, которое обязательно происходит в

Пространство элементарных исходов. Определение 3. 1. Достоверным называется событие, которое обязательно происходит
результате эксперимента, т. е. единственное событие, включающее все элементарные исходы — событие
2. Н е в о з м о ж н ы м называется событие, которое не может произойти в результате эксперимента, т. е. событие, не содержащее ни одного элементарного исхода («пустое множество» ). Заметим, что всегда

Слайд 9

Объединение событий

Определение 4. 1. Объединением A U B событий A и B

Объединение событий Определение 4. 1. Объединением A U B событий A и
называется событие, состоящее в том, что произошло либо A, либо B, либо оба события одновременно. На языке теории множеств A U B есть множество, содержащее как элементарные исходы из множества A, так и элементарные исходы из множества B

Слайд 10

Объединение

Объединение

Слайд 11

Пересечение событий

2. Пересечением A B событий A и B называется событие, состоящее в

Пересечение событий 2. Пересечением A B событий A и B называется событие,
том, что произошли оба события A и B одновременно. На языке теории множеств A B есть множество, содержащее элементарные исходы, входящие в пересечение множеств A и B.

Слайд 12

Пересечение

Пересечение

Слайд 13

Противоположное событие

3. П р о т и в о п о л о

Противоположное событие 3. П р о т и в о п о
ж н ы м (или дополнительным) к событию A называется событие состоящее в том, что событие A в результате эксперимента не произошло. Т. е. множество состоит из элементарных исходов, не входящих в A.

Слайд 14

Противоположное событие

Противоположное событие

Слайд 15

Дополнение

4. Дополнением A\B события B до A называется событие, состоящее в том, что

Дополнение 4. Дополнением A\B события B до A называется событие, состоящее в
произошло событие A, но не произошло B. Т. е. множество A\B содержит элементарные исходы, входящие в множество A, но не входящие в B.

Слайд 16

Дополнение

Дополнение

Слайд 17

Несовместные события

Определение 5.
1. События A и B называют несовместными, если
2. События называются попарно

Несовместные события Определение 5. 1. События A и B называют несовместными, если
несовместными, если для любых i = j, где события
несовместны.

Слайд 18

Несовместные события

Несовместные события

Слайд 19

Событие A влечёт событие B

3. Говорят, что событие A влечёт событие B, и

Событие A влечёт событие B 3. Говорят, что событие A влечёт событие
пишут если всегда, как только происходит событие A, происходит и событие B. На языке теории множеств это означает, что любой элементарный исход, входящий в множество A, одновременно входит и в множество B, т. е. A содержится в B.

Слайд 20

Событие A влечёт событие B

Событие A влечёт событие B

Слайд 21

Вероятность на дискретном пространстве элементарных исходов

Пространство элементарных исходов назовём дискретным, если оно

Вероятность на дискретном пространстве элементарных исходов Пространство элементарных исходов назовём дискретным, если
конечно или счётно:
Множество счётно, если существует взаимно-однозначное соответствие между этим множеством и множеством всех натуральных чисел. Счётными множествами являются множество натуральных чисел, множество целых чисел, множество рациональных чисел, множество чётных чисел и т.д. Множество конечно, если оно состоит из конечного числа элементов.

Слайд 22

Вероятность на дискретном пространстве элементарных исходов

Чтобы определить вероятность любого события на дискретном

Вероятность на дискретном пространстве элементарных исходов Чтобы определить вероятность любого события на
пространстве элементарных исходов, достаточно присвоить вероятность каждому элементарному исходу. Тогда вероятность любого события определяется как сумма вероятностей входящих в него элементарных исходов.

Слайд 23

Вероятность события

Вероятность события

Слайд 24

Свойства вероятности

Свойства вероятности

Слайд 25

Классическое определение вероятности

Предположим, что мы имеем дело с пространством элементарных исходов, состоящим

Классическое определение вероятности Предположим, что мы имеем дело с пространством элементарных исходов,
из конечного числа N элементов:
Предположим, что из каких-либо соображений мы можем считать элементарные исходы равновозможными. Тогда вероятность любого из них принимается равной 1 / N.

Слайд 26

Классическое определение вероятности

Классическое определение вероятности

Слайд 27

Классическое определение вероятности

Определение 7. Говорят, что эксперимент удовлетворяет «классическому определению вероятности», если

Классическое определение вероятности Определение 7. Говорят, что эксперимент удовлетворяет «классическому определению вероятности»,
пространство элементарных исходов состоит из конечного числа = N равновозможных исходов. В этом случае вероятность любого события A вычисляется по формуле
называемой классически м о п р е де л е н и е м
в е р о я т н о с т и.

Слайд 28

Классическое определение вероятности

Формулу
читают так: «вероятность события A равна от-ношению числа исходов, благоприятствующих

Классическое определение вероятности Формулу читают так: «вероятность события A равна от-ношению числа
событию A, к общему числу исходов».
Полезно сравнить это определение с классической формулировкой Якоба Бернулли : «Вероятность есть степень достоверности и отличается от неё как часть от целого»

Слайд 29

Гипергеометрическое распределение

Гипергеометрическое распределение

Слайд 30

Гипергеометрическое распределение

Здесь мы в первый, но далеко не в последний раз встретились

Гипергеометрическое распределение Здесь мы в первый, но далеко не в последний раз
с термином «распределение» вероятностей. Это слово всегда обозначает некий способ разделить (распределить) общую единичную вероятность между какими-то точками или множествами на вещественной прямой.
Имя файла: Основные-понятия-теории-вероятности.pptx
Количество просмотров: 203
Количество скачиваний: 0