возникла в древности в связи с потребностями географии и астрономии.
Основные понятия:
1). Через любые две точки на поверхности сферы (кроме диаметрально противоположных) можно провести единственный большой круг. Этот круг дает окружность, образованную пересечением сферы и плоскости, проходящей через её центр.
2). При пересечении двух больших кругов образуются четыре сферических двуугольника. Площадь двуугольника определяется формулой S = 2R2α, где R — радиус сферы, а α — угол двуугольника.
3). Три больших круга, не пересекающихся в одной точке, образуют восемь сферических треугольников. Сферический треугольник, все стороны которого меньше половины большого круга, называется эйлеровым. Помимо трёх признаков равенства плоских треугольников, для сферических треугольников имеет место ещё один: два сферических треугольника равны, если их соответствующие углы равны.