Слайд 3История телескопа
Телескопы Галилея
В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей
![История телескопа Телескопы Галилея В 1609, узнав об изобретении голландскими оптиками зрительной](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-2.jpg)
самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.
В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд. Эти открытия описаны им в сочинении «Звездный вестник, открывающий великие и в высшей степени удивительные зрелища…» (вышел в свет 12 марта 1610).
Слайд 4Телескопы Гершеля
Английский астроном Уильям Гершель (1738-1822) получил известность в 1781 году,
![Телескопы Гершеля Английский астроном Уильям Гершель (1738-1822) получил известность в 1781 году,](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-3.jpg)
когда с помощью 7-футового телескопа открыл новую планету - Уран.
Свой первый телескоп Гершель построил в 1774 году, затем изготовил 7-футовый, 10-футовый и, наконец, в 1783 году - 20-футовый (6 м) телескоп с объективом диаметром сначала 30 см, а с 1784 - 47.5 см (19"), который и стал его основным рабочим инструментом. С его помощью У. Гершель открыл структуру Млечного Пути и множество туманностей.
Потерпев неудачу при изготовлении 30-футового телескопа, Гершель взялся сразу за 40-футовый (12 м) с зеркалом диаметром 122 см (48") и закончил его в 1789 г. С его помощью были открыты 6-й и 7-й спутники Сатурна. В 1811 г. Гершель перестал пользоваться этим телескопом, и уже после смерти Гершеля, в 1839 г. инструмент был разобран
Слайд 5Телескоп Гевелия
Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе.
![Телескоп Гевелия Телескоп Гевелия имел длину 50 м и подвешивался системой канатов на столбе.](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-4.jpg)
Слайд 6Телескопы Фраунгофера
Изготовлялись Йозефом Фраунгофером (1787-1826) в начале XIX века. Именно благодаря
![Телескопы Фраунгофера Изготовлялись Йозефом Фраунгофером (1787-1826) в начале XIX века. Именно благодаря](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-5.jpg)
им телескоп превратился в точный измерительный инструмент, снабженный параллактической монтировкой, часовым механизмом и микрометром.
Фраунгофер основал в 1817 году первый Оптический институт в Мюнхене и подвел научную основу под изготовление линз для телескопов. Объективы его рефракторов достигали диаметра 24 см.
Слайд 7Телескоп лорда Росса
Был сооружен английским астрономом Уильямом Парсоном (лордом Россом) в
![Телескоп лорда Росса Был сооружен английским астрономом Уильямом Парсоном (лордом Россом) в](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-6.jpg)
1845 году. Имел металлическое зеркало диаметром 72" (1,80 м) и длину 50 футов.
С его помощью лорд Росс открыл спиральную структуру некоторых туманностей.
Слайд 8100" телескоп Хукера (2,54-м)
100-дюймовый (2,58-м) телескоп Маунт-Вилсоновской обсерватории, расположенный недалеко от
![100" телескоп Хукера (2,54-м) 100-дюймовый (2,58-м) телескоп Маунт-Вилсоновской обсерватории, расположенный недалеко от](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-7.jpg)
Пасадены в Калифорнии. Сооруженный на финансовые средства, пожертвованные американским миллионером Джоном Д. Хукером из Лос-Анджелеса. Телескоп начал действовать в 1917 г. До введения в 1948 г. 5-метрового телескопа Хейла телескоп Хукера был самым большим в мире. В 1985 г. этот телескоп был временно закрыт, но впоследствии модернизирован и вновь используется с начала 1990-х гг.
Зеркало отливалось во Франции, обрабатывалось в Пасадене и имело массу 5 т, а общая масса подвижных частей превосходила 100 т.
Слайд 9200" телескоп им.Джорджа Хейла
5-метровый рефлектор в Паломарской обсерватории. Работы по сооружению
![200" телескоп им.Джорджа Хейла 5-метровый рефлектор в Паломарской обсерватории. Работы по сооружению](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-8.jpg)
телескопа были начаты в 1930 г. после получения Калифорнийским технологическим институтом гранта Рокфеллеровского фонда. Завершение работ было отсрочено Второй мировой войной. Официальное открытие состоялось в 1948 г., и телескоп был посвящен памяти Джорджа Эллери Хейла (1868-1938), инициатора и вдохновителя проекта.
Слайд 106-метровый Советский телескоп (БТА)
6-м российский телескоп, расположенный на Северном Кавказе близ
![6-метровый Советский телескоп (БТА) 6-м российский телескоп, расположенный на Северном Кавказе близ](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-9.jpg)
горы Пастухова на высоте 2070 м над уровнем моря. Его координаты: широта 43°39'12" и долгота 41°26'30"
Слайд 11Современные телескопы
Возможности современных телескопов
Первым приемником изображений в телескопе, изобретенным Галилеем в 1609
![Современные телескопы Возможности современных телескопов Первым приемником изображений в телескопе, изобретенным Галилеем](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-10.jpg)
году, был глаз наблюдателя. С тех пор не только увеличились размеры телескопов, но и принципиально изменились приемники изображения. В начале ХХ века в астрономии стали употребляться фотопластинки, чувствительные в различных областях спектра. Затем были изобретены фотоэлектронные умножители (ФЭУ), электронно-оптические преобразователи (ЭОП).
Слайд 12Современные телескопы
Год Диаметр D,мм Угловое Приёмник излучения
изготовления разрешение δ
![Современные телескопы Год Диаметр D,мм Угловое Приёмник излучения изготовления разрешение δ 1610](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-11.jpg)
1610 50 15 Глаз
1800 1200 4 Глаз
1920 2500 1,5 Фотопластинка
1960 5000 1,0 Фотопластинка
1980 6000 1,0 ПЗС
2000 10000 0,02 ПЗС
Слайд 13Эволюция параметров оптических телескопов
В современных телескопах в качестве приемников излучения используют
![Эволюция параметров оптических телескопов В современных телескопах в качестве приемников излучения используют](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-12.jpg)
ПЗС-матрицы. ПЗС состоит из большого количества (1000×1000 и более) полупроводниковых чувствительных ячеек размером в несколько микрон каждая, в которых кванты излучения освобождают заряды, накапливаемые в определенных местах – элементах изображения. Изображения обрабатываются в цифровом виде при помощи ЭВМ. Матрица должна охлаждаться до температур –130°С.
*ПЗС-матрицы -светочувствительная матрица, выполненная на основе ПЗС - «приборов с зарядовой связью».
Слайд 14Проект космического телескопа имени Хаббла
С выводом на орбиту ТЕЛЕСКОПА ИМЕНИ ХАББЛА ,
![Проект космического телескопа имени Хаббла С выводом на орбиту ТЕЛЕСКОПА ИМЕНИ ХАББЛА](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-13.jpg)
астрономия сделала гигантский рывок вперед. Будучи расположенным за пределами земной атмосферы, HST может фиксировать такие объекты и явления, которые не могут быть зафиксированы приборами на земле.
Слайд 15Технические характеристики телескопа Хаббла
Размеры: 13,1 х 4,3 м
Масса: 11 600 кг
Поле зрения:
![Технические характеристики телескопа Хаббла Размеры: 13,1 х 4,3 м Масса: 11 600](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-14.jpg)
18" (для научных целей), 28" (для гидирования)
Угловое разрешение: 0,1" на длине волны 632,8 нм
Спектральный диапазон: 115 нм - 1 мм
Точность стабилизации: 0,007" за 24 ч
Расчетная орбита КА: высота - 610 км, наклонение - 28,5°
Планируемое время функционирования: 15 лет (с обслуживанием)
Стоимость телескопа и КА: 1,5 млрд. долл. (в долл. 1989 г.)
Главное зеркало: Диаметр 2400 мм; Радиус кривизны 11 040 мм; Квадрат эксцентриситета 1,0022985
Вторичное зеркало: Диаметр 310 мм; Радиус кривизны 1,358 мм; Расстояния: Между центрами зеркал 4906,071 мм; От вторичного зеркала до фокуса 6406,200 мм
Слайд 16Устройство телескопа
Телескоп любого типа имеет объектив и окуляр.
Линза, обращенная к объекту
![Устройство телескопа Телескоп любого типа имеет объектив и окуляр. Линза, обращенная к](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-15.jpg)
наблюдения, называется Объективом, а линза , к которой прикладывает свой глаз наблюдатель – Окуляр.
Может быть дополнительная лупа, которая позволяет приблизить глаз к фокальной плоскости и рассматривать изображение с меньшего расстояния, т. е. под большим углом зрения.
Таким образом, телескоп можно изготовить, расположив на одной оси одна за другой две линзы - объектив и окуляр. Для наблюдений близких земных предметов суммарное расстояние фокусов должно быть увеличено.Меняя окуляры, можно получить различные увеличения при одном и том же объективе.
Если линза толще посередине, чем на краях, она называется Собирающей или Положительной, в противном случае – Рассеивающей или Отрицательной.
Слайд 17Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую
![Прямая, соединяющая центры этих поверхностей, называется Оптической осью линзы. Если на такую](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-16.jpg)
линзу попадают лучи, идущие параллельно оптической оси, они, преломляясь в линзе, собираются в точке оптической оси, называемой Фокусом линзы. Расстояние от центра линзы до её фокуса называют фокусным расстоянием. Чем больше кривизна поверхностей собирающей линзы, тем меньше фокусное расстояние. В фокусе такой линзы всегда получается действительное изображение предмета.
Слайд 18Tелескоп принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые
![Tелескоп принято характеризовать угловым увеличением γ. В отличие от микроскопа, предметы, наблюдаемые](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-17.jpg)
в телескоп, всегда удалены от наблюдателя
Слайд 19Назначение телескопа
Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы, телескопы
![Назначение телескопа Телескопы бывают самыми разными – оптические (общего астрофизического назначения, коронографы,](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-18.jpg)
для наблюдения искуственных спутников Земли), радиотелескопы, инфракрасные, нейтринные, рентгеновские. При всем своем многообразии, все телескопы, принимающие электромагнитное излучение, решают две основных задачи
Слайд 20Первая задача телескопа
создать максимально резкое изображение и при визуальных наблюдениях увеличить
![Первая задача телескопа создать максимально резкое изображение и при визуальных наблюдениях увеличить](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-19.jpg)
угловые расстояния между объектами (звездами, галактиками и т. п.);
собрать как можно больше энергии излучения;
увеличить освещенность изображения объектов.
Слайд 21Вторая задача телескопа
увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать
![Вторая задача телескопа увеличивать угол, под которым наблюдатель видит объект. Способность увеличивать](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-20.jpg)
угол характеризуется увеличением телескопа. Оно равно отношению фокусных расстояний объектива и окуляра
Слайд 22Принцип работа телескопа
Принцип работы телескопа заключается не в увеличении объектов, а в
![Принцип работа телескопа Принцип работы телескопа заключается не в увеличении объектов, а](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-21.jpg)
сборе света. Чем больше у него размер главного светособирающего элемента - линзы или зеркала, тем больше света он собирает. Важно, что именно общее количество собранного света в конечном счете определяет уровень детализации видимого - будь то удаленный ландшафт или кольца Сатурна. Хотя увеличение, или сила для телескопа тоже важно, оно не имеет решающего значения в достижении уровня детализации.
Слайд 23Типы телескопов
Рефракторы
Рефлекторы
Зеркально-линзовые
![Типы телескопов Рефракторы Рефлекторы Зеркально-линзовые](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-22.jpg)
Слайд 24Рефракторы
Преломляющие телескопы, или рефракторы, в качестве главного светособирающего элемента используют большую линзу-объектив.
Рефракторы
![Рефракторы Преломляющие телескопы, или рефракторы, в качестве главного светособирающего элемента используют большую](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-23.jpg)
всех моделей включают ахроматические (двухэлементные) объективные линзы - таким образом сокращается или практически устраняется ложный цвет, который влияет на получаемый образ, когда свет проходит через линзу. При создании и установке больших стеклянных линз возникает ряд трудностей; кроме того, толстые линзы поглощают слишком много света. Самый большой рефрактор в мире, имеющий объектив с линзой диаметром в 101 см, принадлежит Йеркской обсерватории.
Слайд 25рефлекторы
Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и у
![рефлекторы Все большие астрономические телескопы представляют собой рефлекторы. Рефлекторные телескопы популярны и](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/334739/slide-24.jpg)
любителей, поскольку они не так дороги, как рефракторы. Это отражающие телескопы, и для сбора света и формирования изображения в них используется вогнутое главное зеркало. В рефлекторах ньютоновского типа, маленькое плоское вторичное зеркало отражает свет на стенку главной трубы.