Содержание
Слайд 2№ 39 (1) (Погорелов) Найдите точки пересечения с осями
координат прямой, заданной уравнением:
№ 39 (1) (Погорелов) Найдите точки пересечения с осями
координат прямой, заданной уравнением:
х + 2у + 3 = 0.
Решение:
Дано: х + 2у + 3 = 0 – уравнение прямой
А – точка пересечения оси х и прямой
В – точка пересечения оси у и прямой
Найти: координаты точки А
1. Пусть точка пересечения с осью х это (х;0). Тогда она удовлетворяет уравнению
прямой, т.е.
х + 2· 0 + 3 = 0
х + 3 = 0
х = - 3,
значит точка пересечения имеет координаты А ( -3;0)
2. Пусть точка пересечения с осью у это (0;у). Тогда она удовлетворяет уравнению
прямой, т.е
0 + 2у + 3 = 0
2у = - 3
у = - 1,5,
значит точка пересечения имеет координаты В (0; - 1,5).
Ответ: А (-3;0), В (0;-1,5)