- Главная
- Астрономия
- ВСР №10. Методы поиска экзопланет
Содержание
- 2. Астрометрический метод. Основан на изменении собственного движения звезд под гравитационным воздействием планет. Хотя с помощью астрометрии
- 3. Метод транзитной фотометрии Если наблюдатель случайно окажется приблизительно в плоскости орбиты, масса планеты будет определена наиболее
- 4. Гравитационное линзирование Когда одна звезда проходит на фоне другой, то, как предсказывает общая теория относительности, свет
- 5. Экзопланета названная GU Psc b, была обнаружен международной группой астрономов во главе с доктором Marie-Eve Naud
- 7. Скачать презентацию
Слайд 2Астрометрический метод.
Основан на изменении собственного движения звезд под гравитационным воздействием планет. Хотя
Астрометрический метод. Основан на изменении собственного движения звезд под гравитационным воздействием планет. Хотя
с помощью астрометрии были уточнены массы некоторых экзопланет, ни одного подтвержденного открытия сделать, пока, не удалось.
Спектрометрическое измерение радиальной скорости звезд. Самый распространенный метод. Звезда, имеющая планету или звездную компоненту, испытывает колебание скорости "к нам - от нас", которое можно измерить, наблюдая доплеровское смещение спектра светил. На первый взгляд это очень сложно. Под действием Земли скорость Солнца изменяется с периодом год на сантиметры в секунду. Под действием Юпитера - на метры в секунду. При этом тепловое уширение спектральных линий звезды соответствует разбросу скоростей порядка 1 км/с. То есть даже в случае такой массивной планеты как Юпитер, надо измерять смещение спектральных линий на тысячную и боле долю от их ширины. Метод основан на наложении спектра звезды на сильно изрезанный линиями калибровочный спектр. Небольшое смещение спектра звезды приводит к изменению суперпозиции на всех частотах, что значительно увеличивает точность измерений. Правда, потом нужно еще учесть суточное движение Земли (это порядка 1 км/с), движение нашей планеты вокруг Солнца (приблизительно 30 км/с), влияние Луны и других тел Солнечной системы. После значительного усовершенствования техники, сейчас ученым удается получить точность до 1 м/с. Именно этот метод обеспечил начальный прорыв в поисках планет возле иных солнц.
Спектрометрическое измерение радиальной скорости звезд. Самый распространенный метод. Звезда, имеющая планету или звездную компоненту, испытывает колебание скорости "к нам - от нас", которое можно измерить, наблюдая доплеровское смещение спектра светил. На первый взгляд это очень сложно. Под действием Земли скорость Солнца изменяется с периодом год на сантиметры в секунду. Под действием Юпитера - на метры в секунду. При этом тепловое уширение спектральных линий звезды соответствует разбросу скоростей порядка 1 км/с. То есть даже в случае такой массивной планеты как Юпитер, надо измерять смещение спектральных линий на тысячную и боле долю от их ширины. Метод основан на наложении спектра звезды на сильно изрезанный линиями калибровочный спектр. Небольшое смещение спектра звезды приводит к изменению суперпозиции на всех частотах, что значительно увеличивает точность измерений. Правда, потом нужно еще учесть суточное движение Земли (это порядка 1 км/с), движение нашей планеты вокруг Солнца (приблизительно 30 км/с), влияние Луны и других тел Солнечной системы. После значительного усовершенствования техники, сейчас ученым удается получить точность до 1 м/с. Именно этот метод обеспечил начальный прорыв в поисках планет возле иных солнц.
Слайд 3Метод транзитной фотометрии
Если наблюдатель случайно окажется приблизительно в плоскости орбиты, масса планеты
Метод транзитной фотометрии Если наблюдатель случайно окажется приблизительно в плоскости орбиты, масса планеты
будет определена наиболее точно. И, при этом, можно также наблюдать такое явление, как прохождение планеты по диску звезды - ее транзиты. Конечно, различить темный кружочек на точечном диске светила пока нельзя, однако небольшое уменьшение светимости звезды измерить можно. Такие "затмения" яркости ничтожны и в случае, например, прохождения Юпитера на фоне Солнца будут становить одну сотую, а для Земли одну десятитысячную долю от общего светового потока нашего светила. И, еще, для того же Юпитера такое явление должно было бы происходить исключительно редко - один раз на 12 лет.
Тем не менее, природа воистину неисчерпаема в многообразии форм движения материи и подарила астрономам возможность использовать метод транзитов: было открыто многие экзопланеты, находящиеся на низких орбитах и быстро вращающиеся вокруг своих звезд - так называемые "горячие юпитеры". А у них вероятность оказаться в плоскости наблюдения гораздо выше. Только с помощью транзитов ученым удается исследовать ряд важнейших характеристик внесолнечных планет - измерить радиусы, плотность, узнать о свойствах атмосфер.
Слайд 4Гравитационное линзирование
Когда одна звезда проходит на фоне другой, то, как предсказывает общая
Гравитационное линзирование Когда одна звезда проходит на фоне другой, то, как предсказывает общая
теория относительности, свет дальней звезды искривляется тяготением ближней и ее яркость увеличивается. Если у ближайшей звезды есть планеты, то это скажется на кривой изменения яркости. Для получения результатов нужно одновременно следить за блеском миллионов звезд. Так что, хотя эффект был предсказан А. Бялко в 60-х годах ХХ века, реализация стала возможна после появления мощных компьютеров и хороших ПЗС матриц. Этот метод наиболее чувствителен к легким планетам типа Земли, находящимся на широких орбитах. К изъянам метода следует отнести то, что провести повторное наблюдение эффекта гравитационного линзирования одной и той же звезды невозможно.
Визуальное наблюдение Увидеть экзопланету даже мощным телескопом очень непросто. Яркий свет родительской планеты затмевает ее ничтожный блеск. Тем не менее, для слабых звезд и бурых карликов прямое детектирование уже стало возможным.
Визуальное наблюдение Увидеть экзопланету даже мощным телескопом очень непросто. Яркий свет родительской планеты затмевает ее ничтожный блеск. Тем не менее, для слабых звезд и бурых карликов прямое детектирование уже стало возможным.
Слайд 5Экзопланета названная GU Psc b, была обнаружен международной группой астрономов во главе
Экзопланета названная GU Psc b, была обнаружен международной группой астрономов во главе
с доктором Marie-Eve Naud из Университета Монреаля, с помощью прямого фотографирования объекта
- Предыдущая
Чертёж плоской деталиСледующая -
Основы систематики растений