Обработка Аэрологических оптических шар-пилотных наблюдений

Содержание

Слайд 2

Расчет высоты шар-пилота

Высоту H можно определить, если известны вертикальная скорость шар-пилота w

Расчет высоты шар-пилота Высоту H можно определить, если известны вертикальная скорость шар-пилота
и время Δt, прошедшее с момента выпуска шар-пилота:
H = w • Δt .
Вертикальная скорость шар-пилота определяется перед выпуском шар-пилота, а время – по секундомеру.
Практически определение вертикальной скорости шар-пилота значительно упрощается с помощью специальных таблиц, учитывающие еще и поправки на изменение плотности воздуха с изменением температуры.

Слайд 3

Дискретность обработки данных шар-пилотных наблюдений

Дискретность обрабатываемых моментов времени:
через 0.5 мин до 3-ей

Дискретность обработки данных шар-пилотных наблюдений Дискретность обрабатываемых моментов времени: через 0.5 мин
минуты включительно;
через 1 мин с 3-ей до 10-й мин;
через 2 мин с 10-й мин до 40 мин,
- через 4 мин с 40 мин до конца подъёма, включая последнюю минуту наблюдения.

Слайд 4

Особенность использования метода оптических шар-пилотных наблюдений заключается в том, что с его

Особенность использования метода оптических шар-пилотных наблюдений заключается в том, что с его
помощью могут быть рассчитаны лишь осредненная в слоях атмосферы скорость и направление ветра.
Толщина каждого такого слоя определяется вертикальной скоростью перемещения объекта и интервалами времени между смежными отчетами.
В дальнейшем эти значения рассматриваются как скорость и направления ветра на высотах, соответствующие высоте середины соответствующих слоев.

Слайд 5

Существуют графический и аналитический методы обработки данных шаропилотных наблюдений. Первоначально наибольшее развитие

Существуют графический и аналитический методы обработки данных шаропилотных наблюдений. Первоначально наибольшее развитие
в оперативной практике получил графический метод, который обладает достаточной простотой и наглядностью. Однако графический метод не обеспечивает достаточной точности обработки исходных данных, поскольку при реализации графического метода часто возникают ошибки как субъективного, так и методического характера.

Слайд 6

От указанных недостатков графического метода свободен аналитический метод обработки данных шаропилотных наблюдений.

От указанных недостатков графического метода свободен аналитический метод обработки данных шаропилотных наблюдений.

Слайд 7

Графический метод обработки данных однопунктных шар-пилотных наблюдений состоит из двух этапов.
Этап 1.

Графический метод обработки данных однопунктных шар-пилотных наблюдений состоит из двух этапов. Этап
Построение положений проекций шар-пилота на горизонтальной поверхность в разные моменты времени.
Этап 2. Последовательное использование положений двух соседних пар проекций для определения скорости и направления ветра.

Слайд 8

Для графического определения скорости и направления ветра на высотах по результатам

Для графического определения скорости и направления ветра на высотах по результатам шаропилотных
шаропилотных наблюдений используется круг Молчанова (СИНОНИМ: аэрологический планшет А-30). Этот прибор состоит из: - металлического неподвижного диска, на одной из сторон которого отпечатана номограмма, - прозрачного целлулоидного круга, который вращается около центра неподвижного круга, - подвижной линейки, вращающейся вокруг центра круга. На прозрачном круге с помощью номограммы строится горизонтальная проекция шара-пилота, по которой определяются скорость и направление ветра.

Слайд 9

Внешний вид круга Молчанова (аэрологический планшет А-30).

Внешний вид круга Молчанова (аэрологический планшет А-30).

Слайд 12

Аналитический метод

Аналитический метод

Слайд 13

Более точными, естественно, являются аналитические методы обработки, использование которых в оперативной практике

Более точными, естественно, являются аналитические методы обработки, использование которых в оперативной практике
возможно лишь при использовании компьютерной техники. Применение компьютерной техники в то же время позволяет архивировать исходные данные и результаты расчетов, упростить процесс представления информации и передачи ее потребителям, повысить культуру труда .

Слайд 14

Алгоритм обработки данных однопунктных шар-пилотных наблюдений

Алгоритм обработки данных однопунктных шар-пилотных наблюдений

Слайд 15

Пример заполнения таблицы при аналитическом расчете скорости и направления ветра

Пример заполнения таблицы при аналитическом расчете скорости и направления ветра

Слайд 16

Пример обработки данных однопунктных шар-пилотных наблюдений

W=200 м/мин; H1=200 0.5 =100м; H2=200 1.0

Пример обработки данных однопунктных шар-пилотных наблюдений W=200 м/мин; H1=200 0.5 =100м; H2=200
=200м;

X1=100 ctg (47.7) cos (159.5) = 100 0.91 (-0.937) = -85.3
X2 = 200 ctg (47.2) cos (155.5) = 200 0.926 (-0.91) = -168.5

Y1 = 100 ctg (47.7) sin (159.5) = 100 0.91 0.35 = 31.9
y2 = 200 ctg (47.2) sin (155.5) = 200 0.926 0.41 = 75.9

V1,0 = [ (-85.3 - 0)2 + (31.9 - 0)2 ] / [60 (0.5 - 0)] = 3.0
V2,1 = [ (-168.5 + 85.3)2 + (75.9 – 31.9)2 ] / [60 (1 - 0.5)] = 3.1

Слайд 17

A1,0 = arc tg I [(31.9 - 0) / (-85.3 - 0)]

A1,0 = arc tg I [(31.9 - 0) / (-85.3 - 0)]
= 20.5; Δx <0; Δy>0
A2,1 = arc tg I [(75.9 – 31.9) / (-168.5 + 85.3)] = 27.9; Δx <0; Δy>0

D1,0 = 360 – 20.5 = 239.5
D2,1 = 360 – 27.9 = 232.1

Слайд 18

Полученные значения скорости и направления ветра записывают в соответствующие графы бланка

Полученные значения скорости и направления ветра записывают в соответствующие графы бланка КАЭ-1
КАЭ-1 в строку, соответствующую концу обрабатываемого интервала времени, т.е. моменту времени ti. Осуществляют привязку полученных ветровых характеристик к высоте. При этом найденные значения скорости и направления ветра относят к высоте середины слоя, пройденному шар-пилотом за соответствующий интервал времени.

Слайд 19

Представление данных однопунктных шар-пилотных наблюдений

Представление данных однопунктных шар-пилотных наблюдений

Слайд 20

Полученные значения скорости и направления ветра, отнесенные к высотам середины слоев

Полученные значения скорости и направления ветра, отнесенные к высотам середины слоев над
над уровнем моря, наносят на график, который строится в масштабе: по вертикали - 1 см ~ 200 м; по горизонтали - 1 см ~ 2м/c, 1 см ~ 100. Первой точкой на графиках наносятся данные о скорости и направлении ветра на уровне станции, с учетом высоты станции над уровнем моря Все нанесенные точки соединяют прямыми линиями (кусочно-линейная интерполяция).

Слайд 21

С построенных графиков снимают значения скорости и направления ветра на стандартных

С построенных графиков снимают значения скорости и направления ветра на стандартных высотах,
высотах, изобарических поверхностях, высотах особых точек, уровнях наибольшей скорости ветра и максимальной скорости ветра.

Слайд 22

В основу критерия для выбора особых точек ветра положена возможность восстановления по

В основу критерия для выбора особых точек ветра положена возможность восстановления по
этим точкам кривой изменения с высотой направленияветра с точностью до 100, скорости ветра до 5 м/с. Особыми точками ветра являются начальная и конечная высота подъема, уровень максимальной скорости ветра, границы пропуска в наблюдениях. Уровнем максимального ветра считается слой атмосферы выше изобарической поверхности 500 гПа (5500 м) где наблюдается скорость ветра превышающая 30 м/с и изменение скорости в двух километровом слое выше или ниже больше 10 м/с.

Слайд 23

Дополнительно на построенных кривых изменения ветра с высотой намечают предполагаемые особые точки,

Дополнительно на построенных кривых изменения ветра с высотой намечают предполагаемые особые точки,
где наблюдается значительный излом кривых. Затем последовательно, в порядке возрастания высоты, исследуют каждую предполагаемую особую точку. Для этого соединяют прямой две соседние с исследуемой точки: нижележащую, уже выбранную особую точку, и вышележащую предполагаемую особую точку. На этой прямой на уровне исследуемой точки определяют линейно интерполированное значение скорости или направления ветра.

Слайд 24

Исследуемую точку включают в число особых, если: линейно интерполированное значение скорости ветра отличается

Исследуемую точку включают в число особых, если: линейно интерполированное значение скорости ветра
от действительного более чем на 5 м/c; линейно интерполированное значение направления ветра отличается от действительного более чем на 100. Найденные значения скорости и направления ветра на стандартных высотах, стандартных изобарических поверхностях записывают в соответствующие графы в левой части бланка КАЭ-1 с точностью до целых.

Слайд 25

Пример КАЭ-1

Пример КАЭ-1

Слайд 26

Пример аналитических расчетов

Пример аналитических расчетов

Слайд 27

Пример графиков

Пример графиков

Слайд 28

Пример таблицы особых точек

Пример таблицы особых точек

Слайд 29

Пример телеграммы

Пример телеграммы