Калейдоскоп интересных задач

Содержание

Слайд 2

Самые интересные задачи.

Задача №9.

Банк начисляет 12% годовых и внесенная сумма равна 100000

Самые интересные задачи. Задача №9. Банк начисляет 12% годовых и внесенная сумма
рублей. Какая сумма будет на счёте клиента банка через 5 лет: а) при начислении банком простых процентов; б) при начислении банком сложных процентов?

Решение. При простом процентном росте через 5 лет сумма составит (1+0,01*12*5)*100000=160000р
при сложном процентном =196941р росте сумма составит (1+0,01*12)2 *100000
Ответ: а) 160000 рублей; б) 196941 рублей

Слайд 3

Задача №10.

Богатый сенатор, умирая, оставил жену в ожидании ребёнка. После смерти

Задача №10. Богатый сенатор, умирая, оставил жену в ожидании ребёнка. После смерти
сенатора выяснилось, что на своё имущество, равное 210 талантов, он составил следующее завещание: «В случае рождения сына отдать мальчику 140 талантов, а остальную 70 талантов – матери; в случае же рождения дочери отдать ей 70 талантов, а остальные 140 талантов – матери». У вдовы родились мальчик и девочка. Как можно разделить имущество между тремя наследниками.

Решение. Если в случае рождения мальчика, матери отдать 70 талантов, а в случае рождения девочки ей отдать 70 талантов. Значит каждый из членов семьи получит по 70 талантов.

Слайд 4

Задача №15.

Ванна заполняется холодной водой за 6 минут 40 секунд, горячей –

Задача №15. Ванна заполняется холодной водой за 6 минут 40 секунд, горячей
за 8 минут. Кроме того, если из полной ванны, вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобиться, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой.

Решение. Сначала заменим время в секундах временем в минутах: 6 минут 40 секунд = 6+2/3, или 20/3, а 13 минут 20 секунд = 13+1/3, или 40/3.Тогда за одну минуту холодной воды заполнится 3/20 ванны, горячей – 1/8 ванны, а вытечет 3/40 ванны. Значит за одну минуту наполнится 1/5 ванны. Следовательно, вся ванна наполнится за 5 минут.
Ответ: 5 минут

Слайд 5

Задача №16.

Дружина храбрых витязей спешит на выручку Илье Муромцу, но по дороге

Задача №16. Дружина храбрых витязей спешит на выручку Илье Муромцу, но по
им необходимо подковать лошадей. Спешившись на постоялом дворе, витязи спрашивают у хозяина кузницы, как быстро он со своими работниками сможет подковать 15 лошадей. На что хозяин отвечает: 15 лошадей это 60 подков, нас 12 работников, каждый кузнец тратит на одну подкову 5 минут, за 20минут управимся. Не обманул ли хозяин витязей? Какое наименьшее время кузнецы потратят на роботу?

Решение.
15-12=3(л)- >, чем работников.
15:3=5(п - на каждого кузнеца.
5*5=25(мин) на работу.
Ответ: хозяин обманул витязей. Самое наименьшее время на работу 25 мин.

Слайд 6

Задача №24.

По шоссе со скоростью 60 км/ч едет колонна машин длиной 300

Задача №24. По шоссе со скоростью 60 км/ч едет колонна машин длиной
метров. Проезжая мимо поста ДПС, каждая машина сбрасывает скорость до 40 км/ч. Какова будет длина колонны, когда все машины проедут пост ДПС?

Решение.
(60:300) * (40:х)
(300*40):60=200м
Ответ: 200 метров колонна после поста.

Слайд 7

Задача № 31.

Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии

Задача № 31. Двое лыжников шли с постоянной скоростью 6 км/ч на
200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала 3 км/ч. Каким стало расстояние между ними?

Решение. Посмотрим что происходило с расстоянием, когда они начали подниматься в горку. Сначала первый лыжник подошёл к её основанию; второй при этом отставал от первого на 200 м. Когда подниматься в горку начал второй лыжник через 0,2/6 ч. первый был от него на расстоянии (0,2/6)*4*1000=200*(4/6)м., то есть начальное расстояние умножилось на отношение скоростей. В конце концов расстояние между лыжниками будет равно 200*(4/6)*(7/4)*(3/7)=200*(3/6)=100 метров
Ответ: 100 метров.

Слайд 8

Самые трудные задачи.

Задача №4.

На Нью-Васюковской валютной бирже за 11 тугриков дают

Самые трудные задачи. Задача №4. На Нью-Васюковской валютной бирже за 11 тугриков
14 динаров, за 22 рупии – 21 динар, за 10 рупий – 3 талера, а за 5 крон – 2 талера. Сколько тугриков можно выменять за 13 крон?
Подсказка.
За 5 крон дают 2 талера, значит, за одну крону дают 2/5 талера или (2/5)*(10/3) рупии.

Решение. 1динар – 11/14 тугриков
1 рупии – 21/22 динара
1 талер – 10/3 рупии
1 крона – 2/5 талера
13*(2/5)*(10/3)*(21/22)* (11/14)==13
Ответ: 13 крон = 13 тугриков.

Слайд 9

Задача №5.

На складе хранилось 100 кг. ягод, содержание воды в которых составило

Задача №5. На складе хранилось 100 кг. ягод, содержание воды в которых
99%.От долгого хранения содержание воды в ягодах сократилось до 98%. Сколько теперь весят ягоды?
Подсказка. Заметьте, вначале в ягодах содержался 1 кг. «сухого вещества».

Решение. В начале хранения в ягодах был 1% (т.е. 1 кг.) сухого вещества. В конце хранения этот же 1 кг. составлял уже 2% (т.е. 100%-98%) от всех ягод. Значит, если 2%-1кг., то 100%-50кг=50кг.
Ответ. 50 кг.

Слайд 10

Задача №13.

Сплав из золота и серебра массой 13кг. 850г. при полном

Задача №13. Сплав из золота и серебра массой 13кг. 850г. при полном
погружении в воду вытеснил 900г. воды. Определите количество золота и серебра в этом сплаве, если известно, что плотность золота равна 19.3 кг/л, а серебра – 10.5 кг/л.

1-й способ. Пусть золота в сплаве х кг, серебра – у кг. Объём сплава 0,9 дм3. Тогда х+у=13.85 и х/19.3+у/10.5=0.9. Получается, что х=9.65 кг, у=4.2 кг.
2-й способ. Предположим, что все 0,9 дм3 – это золото, его масса будет 0,9*19,3=17,37кг. Лишние 17,37-13,85=3,52 кг получились из-за замены некоторого количества кубических дм серебра золотом. Каждый 1 дм в кубе золота на 19,3-10,5=8,8 кг тяжелее 1 дм3 серебра. Следовательно, серебра было 3,52:8,8=0,4 дм3. Масса серебра – 0,4*10,5=4,2 кг, золота – 13,85 – 4,2=9,65 кг.
Ответ: золота – 9,65 кг, серебра – 4,2 кг.

Слайд 11

Задача №28.

Лёша и Ира живут в доме, на каждом этаже которого 9

Задача №28. Лёша и Ира живут в доме, на каждом этаже которого
квартир (в доме один подъезд). Номер этаже Лёши равен номеру квартиры Иры, а сумма номеров их квартир равна 329. Каков номер квартиры Лёши?

Пусть Лёша живёт на этаже с номером Э в квартире 9Э-К. Тогда Ира живёт в квартире Э и по условию Э+9Э-К=10Э-К=329. Получаем единственное решениеК=1, Э=24.Поэтому Лёша живёт в квартире с номером 296.
Ответ: 296.

Слайд 12

Задача №30.

Несколько одинаковых по численности бригад сторожей спали одинаковое число ночей. Каждый

Задача №30. Несколько одинаковых по численности бригад сторожей спали одинаковое число ночей.
сторож проспал больше ночей, чем сторожей в бригаде, но меньше, чем число бригад. Сколько сторожей в бригаде, если все сторожа вместе проспали 1001 человеко-ночей .

Решение. Обозначим через s число сторожей в бригаде, b число бригад, а через n – число ночей, которые проспал один сторож. Тогда s*b*n=1001. Но 1001=7*11*13, причём числа 7,11,13 – простые. Учитывая, что по условию sОтвет: 7

Имя файла: Калейдоскоп-интересных-задач.pptx
Количество просмотров: 73
Количество скачиваний: 0