ПИРАМИДА

Содержание

Слайд 2

Содержание

ОпределениеОпределение Определение пирамиды
Площадь пирамиды
Правильная пирамида
Свойство пирамиды
Апофема

Содержание ОпределениеОпределение Определение пирамиды Площадь пирамиды Правильная пирамида Свойство пирамиды Апофема Теорема
Теорема о площади боковой поверхности правильной пирамиды
Усеченная пирамида
Правильная усеченная пирамида
Теорема о площади боковой поверхности правильной усеченной пирамиды

Слайд 3

Определение

Пирамида – многогранник, составленный из n - угольника А1А2…Аn и n треугольников

Высота

Определение Пирамида – многогранник, составленный из n - угольника А1А2…Аn и n
– перпендикуляр, проведенный из вершины пирамиды к плоскости основания

Боковые ребра

Слайд 4

Пирамиды

Треугольная пирамида (тетраэдр)

Шестиугольная пирамида

Четырехугольная пирамида

Пирамиды Треугольная пирамида (тетраэдр) Шестиугольная пирамида Четырехугольная пирамида

Слайд 5

Площадь пирамиды

Sполн. = Sбок. + Sосн.

Sбок.

Sосн.

Площадь пирамиды Sполн. = Sбок. + Sосн. Sбок. Sосн.

Слайд 6

Правильная пирамида

Пирамида называется правильной, если ее основание – правильный многоугольник, а отрезок,

Правильная пирамида Пирамида называется правильной, если ее основание – правильный многоугольник, а
соединяющий вершину пирамиды с центром основания, является ее высотой

Слайд 7

Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными

Все боковые ребра правильной пирамиды равны, а боковые грани являются равными равнобедренными
треугольниками

Дано:
PA1A2…An – правильная пирамида
Док - ть: 1) А1Р = А2Р = … = АnР
2) △А1А2Р = △А2А3Р = … =
= △Аn-1АnР – р/б

Слайд 8

Док – во:

2) т. к. РА1 = РА2 =…= РАn, поэтому
Боковые

Док – во: 2) т. к. РА1 = РА2 =…= РАn, поэтому
грани – р/б △
Основания этих △ равны:
А1А2 = А2А3 = … = А1Аn
т. к. А1А2…Аn - правильный многоугольник

△А1А2Р = … = △Аn-1АnР – р/б

Слайд 9

Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины

Апофемы

Все

Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины Апофемы
апофемы правильной пирамиды равны друг другу

Слайд 10

Теорема о площади боковой поверхности правильной пирамиды

Площадь боковой поверхности правильной пирамиды равна

Теорема о площади боковой поверхности правильной пирамиды Площадь боковой поверхности правильной пирамиды
половине произведения периметра основания на апофему

Док – во:
Sбок = (½ad + ½ad + ½ad) =
= ½d(a + a + a)= ½dP

Sбок = ½dP

Слайд 11

Усеченная пирамида

многогранник, образованный пирамидой и её сечением, параллельным основанию.

Нижнее и верхнее

Усеченная пирамида многогранник, образованный пирамидой и её сечением, параллельным основанию. Нижнее и
основания

Боковые грани

Боковые ребра

Высота (перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания)

Слайд 12

Все боковые грани усеченной пирамиды - трапеции

Все боковые грани усеченной пирамиды - трапеции

Слайд 13

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной

Усеченная пирамида называется правильной, если она получена сечением правильной пирамиды плоскостью, параллельной
основанию.

Апофема d правильной усеченной пирамиды

Слайд 14

Теорема о площади боковой поверхности правильной усеченной пирамиды

Площадь боковой поверхности правильной усеченной

Теорема о площади боковой поверхности правильной усеченной пирамиды Площадь боковой поверхности правильной
пирамиды равна произведению полусуммы периметров оснований на апофему

S бок = ½(Р1 + Р2) d

P1= 4a1

P2= 4a2

Док – во:
S бок = ½d(a1+a2) + ½d(a1+a2) +
+ ½ d(a1+a2) + ½d(a1+a2) =
= ½d(a1+ a2+ a1+ a2+ a1+ a2+ a1+ a2) =
= ½d(4a1+ 4a2) = ½d(P1+ P2)

Имя файла: ПИРАМИДА.pptx
Количество просмотров: 264
Количество скачиваний: 0