Проблема необратимости и функциональная механика И.В. Волович Математический институт им. В.А. Стеклова РА

Содержание

Слайд 2


Проблема необратимости заключается в том, как совместить обратимость по времени микроскопической динамики

Проблема необратимости заключается в том, как совместить обратимость по времени микроскопической динамики
с необратимостью макроскопических уравнений. Эта фундаментальная проблема рассматривалась в известных работах Больцмана, Пуанкаре, Боголюбова, Фейнмана, Ландау и других авторов, и оставалась открытой.
Недавно был предложен следующий подход к решению проблемы необратимости: предложена новая формулировка классической и квантовой механики, которая необратима по времени. Таким образом снимается противоречие между обратимость микроскопической и необратимость макроскопической динамики, поскольку обе динамики в предлагаемом подходе необратимы.

Слайд 3

Широко используемое понятие микроскопического состояния системы как точки в фазовом пространстве, а

Широко используемое понятие микроскопического состояния системы как точки в фазовом пространстве, а
также понятия траектории и микроскопических уравнений движения Ньютона не имеют непосредственного физического смысла, поскольку произвольные вещественные числа не наблюдаемы.
Фундаментальным уравнением микроскопической динамики в предлагаемом неньютоновском "функциональном" подходе является не уравнение Ньютона, а уравнение типа Фоккера—Планка. Показано, что уравнение Ньютона в таком подходе возникает как приближенное уравнение, описывающее динамику средних значений координат для не слишком больших промежутков времени. Вычислены поправки к уравнениям Ньютона.
Такой подход потребовал также пересмотра обычной Копенгагенской интерпретации квантовой механики.
I.V. Volovich, “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 41:3 (2011), 516–528;
http://arxiv.org/pdf/0907.2445.pdf

Слайд 4


Time Irreversibility Problem
Non-Newtonian Classical Mechanics
Functional Probabilistic General Relativity
Black Hole Information

Time Irreversibility Problem Non-Newtonian Classical Mechanics Functional Probabilistic General Relativity Black Hole Information Paradox
Paradox

Слайд 5

Time Irreversibility Problem

The time irreversibility problem is the problem of how

Time Irreversibility Problem The time irreversibility problem is the problem of how
to explain the irreversible behaviour
of macroscopic systems from
the time-symmetric microscopic laws:
Newton, Schrodinger Eqs –- reversible
Navier-Stokes, Boltzmann, diffusion,
Entropy increasing --- irreversible

Слайд 6

Time Irreversibility Problem

Boltzmann, Maxwell, Poincar´e, Bogolyubov,
Kolmogorov, von Neumann, Landau, Prigogine,
Feynman, Kozlov,…
Poincar´e,

Time Irreversibility Problem Boltzmann, Maxwell, Poincar´e, Bogolyubov, Kolmogorov, von Neumann, Landau, Prigogine,
Landau, Prigogine, Ginzburg,
Feynman: Problem is open.
We will never solve it (Poincare)
Quantum measurement? (Landau)
Lebowitz, Goldstein, Bricmont:
Problem was solved by Boltzmann

Слайд 7

Boltzmann`s answers to:

Loschmidt: statistical viewpoint
Poincare—Zermelo: extremely long
Poincare recurrence time
Coarse graining
Not

Boltzmann`s answers to: Loschmidt: statistical viewpoint Poincare—Zermelo: extremely long Poincare recurrence time Coarse graining Not convincing…
convincing…

Слайд 8

Ergodicity

Boltzmann, Poincare, Hopf, Kolmogorov, Anosov, Arnold, Sinai,…:
Ergodicity, mixing,… for various important deterministic

Ergodicity Boltzmann, Poincare, Hopf, Kolmogorov, Anosov, Arnold, Sinai,…: Ergodicity, mixing,… for various
mechanical and geometrical dynamical systems

Слайд 9

Bogolyubov method

1. Newton to Liouville Eq.
Bogolyubov (BBGKI) hierarchy
2. Thermodynamic limit

Bogolyubov method 1. Newton to Liouville Eq. Bogolyubov (BBGKI) hierarchy 2. Thermodynamic
(infinite number of particles)
3. The condition of weakening of initial correlations between particles in the distant past
4. Functional conjecture
5. Expansion in powers of density
Divergences.

Слайд 10

Why Newton`s mechanics can not be true?

Newton`s equations of motions use real

Why Newton`s mechanics can not be true? Newton`s equations of motions use
numbers while one can observe only rationals. (s.i.)
Classical uncertainty relations
Time irreversibility problem
Singularities in general relativity

Слайд 11

Classical Uncertainty Relations

Classical Uncertainty Relations

Слайд 12

Newton Equation

Phase space (q,p), Hamilton dynamical flow

Newton Equation Phase space (q,p), Hamilton dynamical flow

Слайд 13

Newton`s Classical Mechanics

Motion of a point body is described by the
trajectory

Newton`s Classical Mechanics Motion of a point body is described by the
in the phase space.
Solutions of the equations of Newton or Hamilton.
Idealization: Arbitrary real numbers—non observable.
Newton`s mechanics deals with
non-observable (non-physical) quantities.

Слайд 14

Real Numbers

A real number is an infinite series,
which is unphysical:

Real Numbers A real number is an infinite series, which is unphysical:

Слайд 15

Try to solve these problems by developing a new, non-Newtonian mechanics.
And new,

Try to solve these problems by developing a new, non-Newtonian mechanics. And new, non-Einsteinian general relativity
non-Einsteinian general relativity

Слайд 16

We attempt the following solution of the irreversibility problem: a formulation of

We attempt the following solution of the irreversibility problem: a formulation of
microscopic dynamics which is irreversible in time: Non-Newtonian Functional Approach.

Слайд 17

Functional formulation of classical mechanics
Here the physical meaning is attributed not to

Functional formulation of classical mechanics Here the physical meaning is attributed not
an individual trajectory but only to a bunch of trajectories or to the distribution function on the phase space. The fundamental equation of the microscopic dynamics in the proposed "functional" approach is not the Newton equation but the Liouville or Fokker-Planck-Kolmogorov (Langevin, Smoluchowski) equation for the distribution function of the single particle.
.

Слайд 18

States and Observables in Functional Classical Mechanics

States and Observables in Functional Classical Mechanics

Слайд 19

States and Observables in Functional Classical Mechanics

Not a generalized function

States and Observables in Functional Classical Mechanics Not a generalized function

Слайд 20

Fundamental Equation in Functional Classical Mechanics

Looks like the Liouville equation which is used

Fundamental Equation in Functional Classical Mechanics Looks like the Liouville equation which
in statistical physics
to describe a gas of particles but here we use it to describe a single particle.(moon,…)
Instead of Newton equation. No trajectories!

Слайд 21

Cauchy Problem for Free Particle

Poincare, Langevin, Smolukhowsky ,
Krylov, Bogoliubov, Blokhintsev, Born,…

Cauchy Problem for Free Particle Poincare, Langevin, Smolukhowsky , Krylov, Bogoliubov, Blokhintsev, Born,…

Слайд 22

Free Motion

Free Motion

Слайд 23

Delocalization

Delocalization

Слайд 24

Newton`s Equation for Average

Newton`s Equation for Average

Слайд 25

Comparison with Quantum Mechanics

Comparison with Quantum Mechanics

Слайд 26

Liouville and Newton. Characteristics

Liouville and Newton. Characteristics

Слайд 27

Corrections to Newton`s Equations Non-Newtonian Mechanics

Corrections to Newton`s Equations Non-Newtonian Mechanics

Слайд 28

Corrections to Newton`s Equations

Corrections to Newton`s Equations

Слайд 29

Corrections to Newton`s Equations

Corrections to Newton`s Equations

Слайд 30

Corrections

Corrections

Слайд 31


The Newton equation in this approach appears as an approximate equation describing

The Newton equation in this approach appears as an approximate equation describing
the dynamics of the expected value of the position and momenta for not too large time intervals.
Corrections to the Newton equation are computed.
_____________________________
_____________________________

Слайд 32

Fokker-Planck-Kolmogorov versus Newton

Fokker-Planck-Kolmogorov versus Newton

Слайд 33

Boltzmann and Bogolyubov Equations

A method for obtaining kinetic equations from the Newton

Boltzmann and Bogolyubov Equations A method for obtaining kinetic equations from the
equations of mechanics was proposed by Bogoliubov. This method has the following basic stages:
Liouville equation for the distribution function of particles in a finite volume, derive a chain of equations for the distribution functions,
pass to the infinite-volume, infinite number of particles limit,
postulate that the initial correlations between the particles were weaker in the remote past,
introduce the hypothesis that all many-particle distribution functions depend on time only via the one-particle distribution function, and use the formal expansion in power series in the density.
Non-Newtonian Functional Mechanics:
Finite volume. Two particles.

Слайд 34

Liouville equation for two particles

Liouville equation for two particles

Слайд 35

Two particles in finite volume

Two particles in finite volume

Слайд 36

If satisfies the Liouville equation then obeys to the following equation

Bogolyubov type equation

If satisfies the Liouville equation then obeys to the following equation Bogolyubov
for two particles in finite volume

Слайд 37

Kinetic theory for two particles
Hydrodynamics for two particles?

Kinetic theory for two particles Hydrodynamics for two particles?

Слайд 38

No classical determinism
Classical randomness
World is probabilistic
(classical and quantum)
Compare: Bohr, Heisenberg,
von

No classical determinism Classical randomness World is probabilistic (classical and quantum) Compare:
Neumann, Einstein,…

Слайд 39

Single particle (moon,…)

Single particle (moon,…)

Слайд 40

Newton`s approach: Empty space (vacuum) and point particles.
Reductionism: For physics, biology economy,

Newton`s approach: Empty space (vacuum) and point particles. Reductionism: For physics, biology
politics (freedom, liberty,…)
This approach: No empty space. Probability distribution. Collective phenomena. Subjective.

Слайд 41

Fixed classical spacetime?

A fixed classical background spacetime
does not exists (Kaluza—Klein, Strings,

Fixed classical spacetime? A fixed classical background spacetime does not exists (Kaluza—Klein,
Branes). No black hole metric.
There is a set of classical universes and
a probability distribution
which satisfies the Liouville equation
(not Wheeler—De Witt).
Stochastic inflation?

Слайд 42

Functional General Relativity

Fixed background .
Geodesics in functional mechanics
Probability distributions of

Functional General Relativity Fixed background . Geodesics in functional mechanics Probability distributions
spacetimes
No fixed classical background spacetime.
No Penrose—Hawking singularity theorems
Stochastic geometry? Stochastic BH?

Слайд 43

Quantum gravity.
Superstrings

The sum over manifolds is not defined.
Algorithmically unsolved problem.

Quantum gravity. Superstrings The sum over manifolds is not defined. Algorithmically unsolved problem.

Слайд 45

Fixed classical spacetime?

A fixed classical background spacetime
does not exists (Kaluza—Klein, Strings,

Fixed classical spacetime? A fixed classical background spacetime does not exists (Kaluza—Klein,
Branes).
There is a set of classical universes and
a probability distribution
which satisfies the Liouville equation
(not Wheeler—De Witt).
Stochastic inflation?

Слайд 46

Quantum gravity Bogoliubov Correlation Functions
Use Wheeler – de Witt formulation for QG.

Density operator

Quantum gravity Bogoliubov Correlation Functions Use Wheeler – de Witt formulation for
of the universe on

Correlation functions

Слайд 47

Factorization

Th.M. NieuwenhuizenTh.M. Nieuwenhuizen, I.V. (2005)

Factorization Th.M. NieuwenhuizenTh.M. Nieuwenhuizen, I.V. (2005)

Слайд 48

QG Bogoliubov-Boltzmann Eqs

QG Bogoliubov-Boltzmann Eqs

Слайд 49

Conclusions

BH and BB information loss (irreversibility) problem
Functional formulation (non-Newtonian) of classical
mechanics:

Conclusions BH and BB information loss (irreversibility) problem Functional formulation (non-Newtonian) of
distribution function instead of
individual trajectories. Fundamental equation:
Liouville or FPK for a single particle.
Newton equation—approximate for average values.
Corrections to Newton`s trajectories.
Stochastic general relativity. BH information problem.
QG Bogoliubov-Boltzmann equations.

Слайд 50


Спасибо за внимание!

Спасибо за внимание!
Имя файла: Проблема-необратимости-и-функциональная-механика-И.В.-Волович-Математический-институт-им.-В.А.-Стеклова-РА.pptx
Количество просмотров: 108
Количество скачиваний: 0