Презентации, доклады, проекты без категории

Презентация на тему Применение кристаллов
Презентация на тему Применение кристаллов
Кристаллы и кристаллические материалы находят применение во многих приборах и устройствах, с которыми мы сталкиваемся каждый день. Кристаллы используются: В компьютерах и мобильных телефонах, Аудио- и видеотехнике. Без кристаллов не могут работать многие сложные современные устройства для обработки, передачи и хранения информации, Кристаллы применяются для трансформации одного вида энергии в другой Кристаллы нужны для создания когерентных источников света и управления лазерным излучением Великолепие кристаллов издревле вдохновляет людей на создание красивейших ювелирных украшений и декоративных изделий.  Кристаллы необходимы для обработки поверхностей. Потребность в кристаллах в мире очень высока Десятки тысяч тонн разнообразных кристаллов выращиваются ежегодно, и специалисты по росту и исследованию кристаллов постоянно востребованы как у нас в стране, так и за рубежом. Работы по созданию технологий кристаллических материалов входят в Перечень Приоритетных направлений развития науки, технологий и техники Российской Федерации, утвержденный Президентом РФ. Использование алмазов Так выглядят алмазные резцы для обработки контактных линз. В промышленности часто используются инструменты, покрытые алмазным порошком. Прочность алмаза делает его наиболее подходящим материалом, который применяется при изготовлении тонкой проволоки, в частности нитей накаливания электрических лампы. Алмазные буры
Продолжить чтение
Презентация на тему ПРИНЦИП ГЮЙГЕНСА. ЗАКОН ОТРАЖЕНИЯ СВЕТА
Презентация на тему ПРИНЦИП ГЮЙГЕНСА. ЗАКОН ОТРАЖЕНИЯ СВЕТА
Законы отражения и преломления света можно вывести из одного общего принципа, описывающего поведение волн. Этот принцип впервые был выдвинут современником Ньютона Христианом Гюйгенсом. Гюйгенс Христиан (1629-1695) – голландский физик и математик, создатель первой волновой теории света. Основы этой теории Гюйгенс изложил в «Трактате о свете» (1690). Гюйгенс впервые использовал маятник для достижения регулярного хода часов и вывел формулу для периода колебаний математического и физического маятников. Математические работы Гюйгенса касались исследования конических сечений, циклоиды и других кривых. Ему принадлежит одна из первых работ по теории вероятности. С помощью усовершенствованной им астрономической трубы Гюйгенс открыл спутник Сатурна – Титан. Принцип Гюйгенса Согласно принципу Гюйгенса каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн. Для того чтобы, зная положение волновой поверхности в момент времени t, найти ее положение в следующий момент времени t+∆t, нужно каждую точку волновой поверхности рассматривать как источник вторичных волн. Поверхность, касательная ко всем вторичным волнам, представляет собой волновую поверхность в следующий момент времени (рис.1). Этот принцип в равной мере пригоден для описания распространения волн любой природы: механических, световых и т. д. Гюйгенс сформулировал его первоначально именно для световых волн. Для механических волн принцип Гюйгенса имеет наглядное истолкование: частицы среды, до которых доходят колебания, в свою очередь, колеблясь, приводят в движение соседние частицы среды, с которыми они взаимодействуют. Рис.1.
Продолжить чтение
Презентация на тему Давление
Презентация на тему Давление
Содержание Вступительная часть. Структура и содержание курса физики с точки зрения задач проблемного обучения. Способы создания проблемных ситуаций.Процесс решения учебных проблем. Проблемное обучение при объяснении нового материала. Зависимость проблемного обучения от характера изучаемого материала. Проблемное обучение и самостоятельный эксперимент учащихся. Проблемное обучение при решении физических задач. Проблемное обучение при выполнении домашних заданий. Используемая литература. Чтобы использовать метод проблемного обучения учитель четко должен представлять себе следующее: Какие цели преследует создание проблемной ситуации на уроке? Что будет способствовать возникновению проблемной ситуации на уроке? Какие интеллектуальные затруднения возникнут у учащихся при решении предложенной учителем задачи? Как будет создана проблемная ситуация? Будет ли это проблемный вопрос, или задание, или демонстрация опыта и т.д.? Как вовлечь учащихся в познавательный поиск?
Продолжить чтение
Презентация на тему Интерференция света 11 класс
Презентация на тему Интерференция света 11 класс
Интерференция света — сложение световых волн, при котором происходит усиление световых колебаний в одних точках и ослабление в других. Интерференционная картина возникает только при сложении согласованных (когерентных) волн. Когерентные волны создаются когерентными источниками волн, т.е. источники волн имеют одинаковую частоту и разность фаз их колебаний постоянна. У двух разных источников света никогда не сохраняется постоянная разность фаз волн, поэтому их лучи не интерферируют. Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции закон сохранения энергии не нарушается, происходит перераспределение энергии в пространстве. Опыт английского учёного Т. Юнга по интерференции света 1801 г.
Продолжить чтение
Презентация на тему ПОЛУЧЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ И ИХ ПРИМЕНЕНИЕ
Презентация на тему ПОЛУЧЕНИЕ РАДИОАКТИВНЫХ ИЗОТОПОВ И ИХ ПРИМЕНЕНИЕ
Определение Изото́пы (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомов) — разновидности атомов (и ядер) — разновидности атомов (и ядер) какого-либо химического элемента) — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева) — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N). Открытие изотопов Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионийПервое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада торияПервое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторийПервое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптическиеПервое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновскиеПервое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Содди с 1910 г. стали называть изотопами.
Продолжить чтение