Содержание
- 2. Boolean functions
- 3. Boolean functions
- 4. Boolean functions
- 5. Boolean functions
- 6. Boolean functions
- 7. Boolean functions
- 8. Boolean functions
- 9. Boolean functions
- 10. Boolean expressions and Boolean functions
- 11. Boolean expressions and Boolean functions
- 12. Boolean expressions and Boolean functions
- 13. Boolean expressions and Boolean functionsии
- 14. Boolean expressions and Boolean functions
- 15. Boolean expressions and Boolean functions
- 16. Example 5
- 17. Example 5
- 18. Example 5
- 19. Boolean expressions and Boolean functions
- 20. Boolean expressions and Boolean functions
- 21. Boolean expressions and Boolean functions
- 22. Boolean expressions and Boolean functions
- 23. Boolean expressions and Boolean functions
- 24. The Boolean functions of degree two
- 25. Boolean expressions and Boolean functions
- 26. Identities of Boolean algebra
- 27. Identities of Boolean algebra
- 31. Identities of Boolean algebra Compare these Boolean identities with the logical equivalences and the set identities!
- 32. Identities of Boolean algebra
- 33. Identities of Boolean algebra
- 34. Identities of Boolean algebra
- 35. Disjunctive normal form We now show how any Boolean expression can be expressed in an equivalent
- 36. Disjunctive normal form
- 37. Example of a minterm
- 38. Disjunctive normal form
- 39. A procedure for constructing a Boolean expression representing a function with given values as DNF By
- 40. A procedure for constructing a Boolean expression representing a function with given values as DNF Consequently,
- 41. Disjunctive normal form
- 42. Solution of example 9
- 44. Conjunctive normal form
- 45. Example of a maxterm
- 46. Conjunctive normal form
- 47. A procedure for constructing a Boolean expression representing a function with given values as CNF By
- 48. A procedure for constructing a Boolean expression representing a function with given values as CNF Consequently,
- 49. Conjunctive normal form
- 50. Solution of example 10
- 52. Functional completeness
- 53. Functional completeness Can we find a smaller set of functionally complete operators? We can do so
- 54. Functional completeness
- 55. Functional completeness
- 56. Functional completeness We have found sets containing two operators that are functionally complete. Can we find
- 57. Functional completeness
- 58. Functional completeness
- 59. Functional completeness
- 60. Biography George Boole, the son of a cobbler, was born in Lincoln, England, in November 1815.
- 61. Biography In his preparation for teaching mathematics, Boole – unsatisfied with textbooks of his day –
- 62. Biography In 1848 Boole published The Mathematical Analysis of Logic, the first of his contributions to
- 64. Скачать презентацию





























































My monster hasppt fun
Who is knocking at the door
Present Simple
Centre of swimming with dolphins
Презентация на тему Собор Святого Павла
Welcome To Congress Plaza Hotel
The City
Reading. Sound “o”
Презентация на тему Магазины. Покупки
Basics 01. Grundlagen Englisch - Present simple - Present continuous - time expressions
Машинный перевод
The Ural Mountains
Proposal presentation for production of an outdoor map
Описание картинки
Презентация на тему St.Valentine's Day
Persona pronouns
Official symbols country Lebanon
Чтение буквосочетания ph
How to train your dragon Listening
Актуальные УМК в школах России. English workshop
Irregular billiards
Hostel
Yes, You, Can
Конструкция There is/are и выражение количества
Презентация на тему William Shakespeare
Present simple. Bugs
Vocabulary-Rooms in a House Bathroom
LinguaTrip. History of the company