Учитель математики МОУ СОШ 1 Тупикова Л. М.. «Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему,

Слайд 2

«Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо

«Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо
важнее. Политика существует только для данного момента, а уравнения будут существовать вечно»
А. Эйнштейн

Слайд 3


№ Вариант №1 Вариант № 2

Проверь себя

№ Вариант №1 Вариант № 2 Проверь себя

Слайд 4

«Дороги не те знания, которые откладываются в мозгу, как жир, дороги те,

«Дороги не те знания, которые откладываются в мозгу, как жир, дороги те,
которые превращаются в умственные мышцы»
Герберт Спенсер

Слайд 5

Метод, введения новой переменной

2sin²x-5sinx+2=0
Решение.
Пусть sinx=a (│a│≤1). 2а²-5а +2 =0,
D=9, a₁=2, не удовлетворяет

Метод, введения новой переменной 2sin²x-5sinx+2=0 Решение. Пусть sinx=a (│a│≤1). 2а²-5а +2 =0,
условию│a│≤1.
а₂=1/2.
Отсюда sinx=1/2, x=(-1)ⁿ π/6+πn, n∈Z.
Ответ: x=(-1)ⁿ π/6+πn, n∈Z.

Слайд 6

Метод разложения на множители

2 sinx cos 5x – cos 5x =0.
Решение.
сos 5x(2sinx-1)=0.
Произведение

Метод разложения на множители 2 sinx cos 5x – cos 5x =0.
равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом не теряет смысла.
cos 5x =0 или sinx = 1/2,
5x =π/2 + πk, x = (-1)ⁿ π/6 + πn, n∈Z.
x = π/10 + πk/5, k∈Z.
Ответ: x = π/10 + πk/5, k∈Z;
x = (-1)ⁿ π/6 + πn, n∈Z.

Слайд 7

Однородное уравнение 1степени.

sin2x+cos2x=0.
Решение.
Разделим обе части уравнения почленно на cos2x. (если cos2x=0,

Однородное уравнение 1степени. sin2x+cos2x=0. Решение. Разделим обе части уравнения почленно на cos2x.
то и sin2x=0, а это невозможно, так как cos2x и sin2x обращаются в нуль в различных точках.)
Получим: tg2x+1=0, tg2x=-1, 2x=arctg(-1)+πn, 2x=-π\4+πn, x=-π\8+πn\2.
Ответ: x=-π\8+πn\2.

Слайд 8

Однородное уравнение 2 степени

3sin²x + sin x cos x = 2 cos²x.
Решение.
Однородное

Однородное уравнение 2 степени 3sin²x + sin x cos x = 2
тригонометрическое уравнение 2 степени. Разделим почленно обе части уравнения на cos²x, где cos²x ≠ 0, (если cos²x=0, то и sin²x=0, что противоречит основному тригонометрическому тождеству cos²x + sin²x=1).
Получим 3tg²x + tg x – 2 = 0.Пусть tg x = a, тогда имеем
3а² + a – 2=0,
D = 25, a₁=-1, a₂= 2/3.
Отсюда tgx = -1, x = arctg (-1) +πn, n∈Z, x= - π/4 + πn, n∈Z;
tg x = 2/3, x = arctg 2/3 + πk, k∈Z.
Ответ: x= - π/4 + πn, n∈Z;
x = arctg 2/3 + πk, k∈Z.

Слайд 9

Уравнение acos x + bsin x = c, где abc ≠ 0

√3

Уравнение acos x + bsin x = c, где abc ≠ 0
cos x + sin x = 2
Решение.
a= √3, b =1, c = √a² + b² = √3+1=2.
√3/2 cos x + ½ sin x =1,
cos π/6 cos x + sin π/6 sin x =1, cos (x - π/6) =1,
x - π/6 = 2 πn, n∈Z,x= π/6 + 2 πn, n∈Z.
Ответ: x= π/6 + 2 πn, n∈Z.
Имя файла: Учитель-математики-МОУ-СОШ-1-Тупикова-Л.-М..-«Мне-приходится-делить-время-между-политикой-и-уравнениями.-Однако-уравнения,-по-моему,-.pptx
Количество просмотров: 157
Количество скачиваний: 0