Автономному дому – свою микро-ТЭЦ

Содержание

Слайд 2

 Такая энергоустановка, несмотря на свои малые размеры и мощность преобразуемой энергии, вполне

Такая энергоустановка, несмотря на свои малые размеры и мощность преобразуемой энергии, вполне
способна обеспечить усадебный дом, дачу, небольшой туристический лагерь, другие подобные объекты и электричеством, и теплом, и горячей водой, и даже подогретым воздухом для сушки материалов и всяких выращенных или собранных плодов, ягод, фруктов, грибов и трав.
             Конструкция микро-ТЭЦ подробно описана в публикации изобретения (патент РФ № 2608448, 2017 г.). Она представляет собой единый модуль, все компоненты которого могут быть изготовлены в заводских условиях, что позволит освоить их массовое производство и облегчить монтаж на месте их установки. В таком варианте она представлена на рис. 1.

С появлением новых разработок можно показать пример энергоснабжения «малых» объектов с помощью единой энергоустановки – микро-ТЭЦ, работающей по гибридной схеме от возобновляемых энергоисточников.

Слайд 3

 Корпус теплоаккумулятора 1 является одновременно основанием и ветротепловой установки (ВТУ) 2 и

Корпус теплоаккумулятора 1 является одновременно основанием и ветротепловой установки (ВТУ) 2 и
солнечного коллектора-нагревателя (СКН) 3. Панели СКН расположены на освещаемых солнцем стенках теплоаккумулятора, которые выполнены из листового металла и являются лучепоглощающей поверхностью. Они имеют со стороны облучения селективное покрытие и прозрачное теплоизолирующее ограждение. Панели могут быть оснащены расположенными над ними козырьками 4 с зеркальной нижней поверхностью, являющимися к тому же и защитой панелей от атмосферных осадков. Угол наклона козырьков должен обеспечивать максимальное дополнительное солнечное облучение панелей в зимний период.
            Остальная поверхность теплоаккумулятора, кожух теплообменника турбинного агрегата, а также трубопроводы внешнего теплообменного контура имеют теплоизоляционное покрытие, например, известными органосиликатными составами «Силтэк», «Броня», «Корунд» и т.п.
 Предпочтительным вариантом ВТУ в конструкции рассматриваемой микро-ТЭЦ представляется только что запатентованный в России (патент № 2623637) ветротепловой преобразователь с вертикальным валом, имеющий корпус, выполненный в форме улитки, турбину с ротором в виде усеченного конуса, оснащенным желобчатыми лопастями, а выходным каналом является раструб 5, расположенный над корпусом турбины и одновременно являющийся флюгером для ориентации ветроустановки входным конфузором 6 навстречу ветровому потоку. И конфузор, и раструб выполнены в виде жестких каркасов с легкой оболочкой.

Слайд 4

  Широкий фронт захвата потока воздуха с его сжатием и последующим закручиванием

Широкий фронт захвата потока воздуха с его сжатием и последующим закручиванием в
в улитке корпуса, где он одновременно воздействует на все лопасти турбины и затем удаляется через раструб (в основном – силой разрежения, создаваемого в нем обтекающим ветром), обеспечивает предельно высокий к.п.д. преобразования энергии ветра в механическую энергию.
            Входной конфузор ветропреобразователя оснащен своеобразной защитой от запредельных ветровых нагрузок, при которых его боковые стенки синхронно раскрываются и переходят во флюгерное положение, но ветроустановка продолжает работу на «малом фронте» ветрового потока. В ближайшей безветренной паузе стенки под действием пружин возвращаются и фиксируются в исходном положении (см. вид сверху – на рис. 1).
            Механическая энергия превращается в тепловую теплогенератором в виде осевого вентилятора с изменяющимся наклоном лопастей в зависимости от скорости ветрового потока, датчик 7 которого связан с механизмом изменения их наклона, чем и поддерживается постоянство оптимального соотношения скоростей вращения турбины и вихревого потока (примерно 1:2). При кратковременных перерывах ветра лопасти складываются в диск, нагрузка на турбине резко падает и она продолжает вращение по инерции до возобновления ветра, сокращая время на свою раскрутку.
            Далее, часть тепловой энергии преобразуется в электрическую паротурбинным блоком 8 с электрическим генератором 9.

Слайд 5

  Для нормальной работы микро-ТЭЦ необходимо в верхней части внутреннего пространства теплоаккумулятора

Для нормальной работы микро-ТЭЦ необходимо в верхней части внутреннего пространства теплоаккумулятора иметь
иметь температуру воздуха, значительно превышающую температуру кипения рабочей жидкости при рабочем давлении пара. И такая температура создается ветротепловой установкой и солнечным коллектором-нагревателем. При использовании чистого воздухопроницаемого теплоаккумулирующего материала предельная температура его нагрева ограничена только балансом между запасенным да поступающим теплом, создаваемым первичными преобразователями энергии, и его расходом с учётом всех теплопотерь.
            При этом нагрев теплоаккумулирующего материала по всему его объёму осуществляется принудительной – от ВТУ – и естественной – от СКН – циркуляцией воздуха. Принудительная циркуляция нагревает материал, как в известной аэродинамической сушильной камере, только температура нагрева может намного превышать требуемую для испарения влаги, которой в нашем теплоаккумуляторе, конечно же, нет. А солнечные панели с их минимальными внешними теплопотерями только усилят при солнечном облучении этот нагрев. При наличии отражающих козырьков этот эффект возрастает. Такая «гибридная» система нагрева, использующая не единственный источник энергии, позволяет сократить перерывы в пополнении теплового ресурса аккумулятора, уменьшить его размеры при сохранении расчетной надежности энергоснабжения.

Слайд 6

Итак, внутри теплоаккумулятора в пространстве с максимальной температурой нагрева воздуха указанными преобразователями

Итак, внутри теплоаккумулятора в пространстве с максимальной температурой нагрева воздуха указанными преобразователями
расположен парогенератор (см. рис. 2), состоящий из корпуса котла 1 с оребрённой поверхностью, коническим либо сферическим днищем 2, буферной ёмкостью 3, пароперегревателем 4 в виде коаксиальной камеры между стенкой корпуса и внутренним теплоизолированным цилиндром 5, оснащенной кольцевым перепускным клапаном 6 (например, из кремнийорганического полимера). Котел оснащен внешней теплоизолированной оболочкой 7 с рядом входных отверстий в её верхней части и вентилятором 8 внизу. Над парогенератором (это уже вне теплоаккумулятора) расположен турбинный агрегат 9. Паровая турбина 10 оснащена датчиком 11 передаваемого крутящего момента (с конструкцией, например, сходной с известной предохранительной пружинно-кулачковой муфтой осевого типа) Он кинематически связан с золотниковым устройством 12 в виде поворотного кольца с отверстиями и соосными с ними сопловыми элементами 13. Днище турбинного отсека также имеет коническую форму с кольцевым углублением в центральной части, где расположено «безнасосное» устройство возврата конденсата, сходное по конструкции с известным объёмным дозатором. Оно состоит из втулки 14 с расположенными по окружности сквозными полостями и плотно прилегающими к ней торцевыми дисками со смещенными по кругу – верхними относительно нижних – отверстиями (см. вид А). Сама втулка связана с турбиной понижающей передачей.

Слайд 7

    С валом турбины связан вентилятор (насос) 15 внешнего теплообменного контура.
            Ввод

С валом турбины связан вентилятор (насос) 15 внешнего теплообменного контура. Ввод микро-ТЭЦ
микро-ТЭЦ в рабочий режим производится включением вентилятора. Поток горячего воздуха нагревает стенки и днище котла до кипения жидкости – в её строго определенном объёме, закрывающем только поверхность днища. Повышенным давлением образовавшегося пара часть жидкости перемещается в буферную ёмкость, сжимая в ней воздух до такого же давления. При этом уровень жидкости за её пределами понижается и изменяющаяся площадь теплопередачи от днища автоматически поддерживает этот баланс. По достижении минимального рабочегодавления пара он, преодолевая силу обжима кольцевого клапана, проходит через отверстия внутреннего цилиндра в пароперегреватель и с увеличенной за счёт перегрева скоростью поступает в расположенные по кругу сопловые элементы. При этом в отсутствие нагрузки на генераторе турбина ускоренно набирает расчётные обороты. С появлением на ней возрастающей нагрузки зубчатый торец втулки отжимает венец датчика крутящего момента, который через симметрично расположенные рычажные механизмы поворачивает кольцо золотникового устройства, увеличивая подачу пара в сопловые элементы. Это (вместе с другими известными способами) обеспечивает постоянство частоты вращения турбинного вала.
            При оптимальном соотношении скорости на выходе из сопловых элементов потока пара и окружной скорости лопаток турбины он, передав им свою кинетическую энергию, с остаточной скоростью попадает на внутреннюю стенку теплообменника 16, превращаясь в конденсат (см. выноску на рис. 2), который стекает по ней и далее – по конической поверхности днища корпуса турбинного агрегата – к устройству возврата конденсата. Здесь через отверстия он заполняет полости вращающейся с малой скоростью втулки, плотно закрытые в этот момент нижним диском, а в следующий момент, когда втулка повернута на некоторый угол и заполненные конденсатом полости оказывается плотно закрытыми сверху, они проходят над нижними отверстиями и конденсат стекает в котел по периметру буферной ёмкости, охлаждая её и предотвращая кипение в ней жидкости, чем поддерживается там режимное давление воздуха.
Имя файла: Автономному-дому-–-свою-микро-ТЭЦ.pptx
Количество просмотров: 30
Количество скачиваний: 0