Извлечение информации

Содержание

Слайд 2

Введение

Information Extraction – извлечение из текста информации определенного типа и представление ее

Введение Information Extraction – извлечение из текста информации определенного типа и представление
в заданном формате (чаще всего БД)

Information
Retrieval

Text
Understanding
Information
Extraction

Слайд 3

Мотивация

Пополнение баз данных (и баз знаний)
Получение входных данных для работы других систем
Привлечение

Мотивация Пополнение баз данных (и баз знаний) Получение входных данных для работы
внимания эксперта к значимым аспектам информации

Слайд 4

Содержание

Message Understanding Conference
Извлечение информации: основные подходы
Named Entity Recognition
Извлечение отношений
Наш опыт

Содержание Message Understanding Conference Извлечение информации: основные подходы Named Entity Recognition Извлечение отношений Наш опыт

Слайд 5

– выработка общих подходов к методологии и способам оценки систем извлечения информации

– выработка общих подходов к методологии и способам оценки систем извлечения информации
из текста.

MUC (Message Understanding Conference), 1987-1997

Слайд 6

Named Entity recognition - выделение именованных сущностей
Coreference resolution - разрешение кореференции
Template Element

Named Entity recognition - выделение именованных сущностей Coreference resolution - разрешение кореференции
construction - добавление атрибутов к сущностям, найденным на этапе NE, с использованием CR
Template Relation construction – выявление связей между отдельными сущностями
Scenario Template production – построение полного описания события (факта) путем объединения результатов TE и TR

Дорожки MUC

Слайд 7

Блестящая красная ракета была запущена во вторник. Это изобретение доктора Биг Хеда.

Блестящая красная ракета была запущена во вторник. Это изобретение доктора Биг Хеда.
Хед - штатный научный сотрудник Билд Рокет Инкорпорейтед.
Named Entity recognition:
доктор Биг Хед, Хед, Билд Рокет Инкорпорейтед
ракета, вторник…
Сoreference resolution:
доктор Биг Хед ≈ Хед
это → ракета
Template Element construction:

Слайд 8

Блестящая красная ракета была запущена во вторник. Это изобретение доктора Биг Хеда.

Блестящая красная ракета была запущена во вторник. Это изобретение доктора Биг Хеда.
Хед - штатный научный сотрудник Билд Рокет Инкорпорейтед.
Template Relation construction:
Scenario Template production:

Слайд 9

Recall = Ncorrect /Nall-correct
Precision = Ncorrect /(Ncorrect + Nincorrect )
F-mera = (β2+1

Recall = Ncorrect /Nall-correct Precision = Ncorrect /(Ncorrect + Nincorrect ) F-mera
)*r*p/(β2 * r+p)
Named Entity recognition F<94%
Coreference resolution F<62%
Template Element construction F<87%
Template Relation construction F<76%
Scenario Template production F<51%

Оценка

Слайд 10

Дальнейшее развитие

ACE (Automatic Content Extraction) 1999 – 2008
По сравнению с MUC:
более

Дальнейшее развитие ACE (Automatic Content Extraction) 1999 – 2008 По сравнению с
детальная таксономия сущностей
для всех систем обязательна интерпретация метонимических связей
требуется семантический анализ обрабатываемого текста
Text Analysis Conference (TAC) – настоящее время

Слайд 11

Содержание

Message Understanding Conference
Извлечение информации: основные подходы
Named Entity Recognition
Извлечение отношений
Наш опыт

Содержание Message Understanding Conference Извлечение информации: основные подходы Named Entity Recognition Извлечение отношений Наш опыт

Слайд 12

Основные подходы

Задача всегда предельно конкретна:
определенный тип текста
искомая информация представлена в виде набора

Основные подходы Задача всегда предельно конкретна: определенный тип текста искомая информация представлена
полей для заполнения
Текст, включающий такую информацию, предельно шаблонный
Поиск осуществляется при помощи набора образцов

Слайд 13

Образцы

Состав образцов:
Лексика, семантика
Частичный синтаксис
Близость, взаимное расположение частей
Формат:
Зависит от формата представления текста в

Образцы Состав образцов: Лексика, семантика Частичный синтаксис Близость, взаимное расположение частей Формат:
системе
Часто используются специальные языки (грамматики)
Построение образцов:
Вручную
Машинное обучение (bootstrapping)
Обобщение образцов с привлечением словарных и/или онтологических ресурсов

Слайд 14

Машинное обучение

Pro:
не требует большого количества ручного труда по написанию правил
система более гибкая,

Машинное обучение Pro: не требует большого количества ручного труда по написанию правил
ее легко перенастроить
Contra:
требуется большой обучающий корпус, правильно и полностью размеченный
сложно отследить в каком именно месте возникла ошибка и исправить ее «точечно»

Слайд 15

Правила

Pro:
Может быть предпочтительна в случае сложной предметной области и/или отсутствия лингвистических ресурсов
Contra
Большая

Правила Pro: Может быть предпочтительна в случае сложной предметной области и/или отсутствия
ручная работа, требующая специальной квалификации
Трудно перенастраивать
Возможны (и даже предпочтительны) гибридные подходы

Слайд 16

Содержание

Message Understanding Conference
Извлечение информации: основные подходы
Named Entity Recognition
Анафора и кореференция
Наш опыт

Содержание Message Understanding Conference Извлечение информации: основные подходы Named Entity Recognition Анафора и кореференция Наш опыт

Слайд 17

Извлечение именованных сущностей

Named Entity:
Стандартные примеры: персоналии, географические названия, организации…
Для биологических текстов:

Извлечение именованных сущностей Named Entity: Стандартные примеры: персоналии, географические названия, организации… Для
названия генов, белков, ферментов…
Не только для Information Extraction: ответы на вопросы, извлечение мнений, реферирование…
Named Entity Recognition: Information Extraction в миниатюре; проще, потому что не нужно извлекать связи между понятиями

Слайд 18

Основные подходы

Основанный на знаниях:
список имен собственных
регулярные выражения, описывающие именованные сущности
образцы, описывающие контекст
Машинное

Основные подходы Основанный на знаниях: список имен собственных регулярные выражения, описывающие именованные
обучение
обучающий корпус
определение характерных свойств
поиск по этим свойствам

Слайд 19

Содержание

Message Understanding Conference
Извлечение информации: основные подходы
Named Entity Recognition
Извлечение отношений
Наш опыт

Содержание Message Understanding Conference Извлечение информации: основные подходы Named Entity Recognition Извлечение отношений Наш опыт

Слайд 20

Извлечение отношений между понятиями

Отношения:
Таксономические – РОД-ВИД, ЧАСТЬ-ЦЕЛОЕ…
Специфические для предметной области – СТРАНА-СТОЛИЦА,

Извлечение отношений между понятиями Отношения: Таксономические – РОД-ВИД, ЧАСТЬ-ЦЕЛОЕ… Специфические для предметной
БЕЛОК-ФЕРМЕНТ…
В тексте определяются:
Свойствами именованных сущностей
Лексическими свойствами контекста
Синтаксическими свойствами контекста
Извлечение:
Правила (образцы) vs. машинное обучение
Поиск: начиная с именованных сущностей vs. Начиная с отношений

Слайд 21

Анафора и кореференция

Извлечение информации в масштабах текста
Кореференция: возможно использование экстралингвистической информации
Анафора: невозможно

Анафора и кореференция Извлечение информации в масштабах текста Кореференция: возможно использование экстралингвистической
использование экстралингвистической информации
Вокруг местоимения отыскиваются существительные-кандидаты
Проверяется согласование
Статистики и эвристики
Во многих систем не разрешается ни анафора, ни даже кореференция – трудоемкие алгоритмы, низкое качество

Слайд 22

Содержание

Message Understanding Conference
Извлечение информации: основные подходы
Named Entity Recognition
Извлечение отношений
Наш опыт:
Система фактографического поиска

Содержание Message Understanding Conference Извлечение информации: основные подходы Named Entity Recognition Извлечение
в газетных текстах
Система автоматического пополнения онтологии на основе энциклопедических и толковых словарей

Слайд 23

Система фактографического поиска в газетных текстах

Рубашкин В. Ш., Капустин В. А., Пивоварова

Система фактографического поиска в газетных текстах Рубашкин В. Ш., Капустин В. А.,
Л. М., Чуприн Б. Ю.  Методы извлечения фактографической информации из текстов. Опыт разработки.  // Megaling’2007 Горизонты прикладной лингвистики и лингвистических технологий– Симферополь: Изд-во ДиАйПи, 2007.
Пивоварова Л.М. Фактографический анализ текста в системе поддержки принятия решений // Вестник Санкт-Петербургского университета Сер. Филология, востоковедение, журналистика. 2010. Вып. 4 - 190-197

Слайд 24

Система Factors

Система, основанная на знаниях – используется онтология IntTez - http://inttez.ru/

Система Factors Система, основанная на знаниях – используется онтология IntTez - http://inttez.ru/

Слайд 25

Постановка задачи
Задача: извлечение из текстов СМИ информации общественно-политической тематики.
Факторы - различные характеристики

Постановка задачи Задача: извлечение из текстов СМИ информации общественно-политической тематики. Факторы -
общественно-политической ситуации(около 100).
Значения факторов:
Количественные - число пенсионеров; средний уровень заработной платы
Оценочные - социальная напряженность; военные угрозы

Слайд 26

Система Factors:
- интеллектуальная среда для поддержки работы эксперта-аналитика с текстами.
Режимы работы:
Автоматический
Диалоговый

ТЕКСТЫ

FACTORS

Система Factors: - интеллектуальная среда для поддержки работы эксперта-аналитика с текстами. Режимы

Слайд 27

Функциональность:
Последовательное наращивание распознаваемых аспектов содержания в процессе работы эксперта-аналитика с системой.
Легкость и

Функциональность: Последовательное наращивание распознаваемых аспектов содержания в процессе работы эксперта-аналитика с системой.
простота редактирования и пополнения; визуальное представление информации.
Функциональная расширяемость и переносимость на другие проблемные и предметные области.

Слайд 28

Образцы
Текстовые – выделение в тексте релевантных фрагментов (при анализе может проверяться совпадение

Образцы Текстовые – выделение в тексте релевантных фрагментов (при анализе может проверяться
синтаксических связей)
Концептуальные – сборка образца из концептов онтологии (при анализе осуществляется поиск с учетом отношения «общее-частное»)
Смешанные

Слайд 29

Образцы
Фактор + значение
В основном для оценочных факторов социальная напряженность → стихийный митинг
Только

Образцы Фактор + значение В основном для оценочных факторов социальная напряженность →
фактор
Для количественных факторов:
уровень инфляции →
инфляция составила 4%

Слайд 30

Поиск образцов в тексте
население ... право на труд ... ограничение
1) Поиск опорного

Поиск образцов в тексте население ... право на труд ... ограничение 1)
элемента
население ... право на труд ... ограничение
2) Поиск в окрестности других элементов
население ... право на труд ... ограничение
Для концептов образца – учет синонимов
ограничение = ограниченный, ограничить, ущемление
Параметры поиска предполагают отладку и настройку

Слайд 31

Только фактор: поиск значения
Собственный признак фактора – концепт, отвечающий на вопрос «количество

Только фактор: поиск значения Собственный признак фактора – концепт, отвечающий на вопрос
(величина) чего?»
Уровень зарплаты → заработная плата
Транспортные издержки → траты
Число пенсионеров → пенсионеры
Онтология:
собственный признак ↔ единица измерения
заработная плата ↔ денежная единица
пенсионеры ↔ без единиц

Слайд 32

Общий алгоритм поиска
1) Поиск образца
2) Определение собственного признака и единиц измерения
3) Поиск

Общий алгоритм поиска 1) Поиск образца 2) Определение собственного признака и единиц
числа с единицей измерения
4) Проверка соответствия единиц измерения
5) Если число не найдено – поиск слов большой, маленький, растет, падает и их синонимов
6) Определение достоверности

Слайд 33

Содержание

Message Understanding Conference
Извлечение информации: основные подходы
Named Entity Recognition
Извлечение отношений
Наш опыт:
Система фактографического поиска

Содержание Message Understanding Conference Извлечение информации: основные подходы Named Entity Recognition Извлечение
в газетных текстах
Система автоматического пополнения онтологии на основе энциклопедических и толковых словарей

Слайд 34

V. Bocharov, L. Pivovarova, V. Rubashkin, B. Chuprin Ontological Parsing of Encyclopedia

V. Bocharov, L. Pivovarova, V. Rubashkin, B. Chuprin Ontological Parsing of Encyclopedia
Information. In Computational Linguistics and Intelligent Text Processing 11th International Conference, CICLing 2010, Iasi, Romania, March 21-27, 2010. Proceedings. Lecture Notes in Computer Science. - Springer Berlin / Heidelberg – 2010 – pp. 564 – 579
Бочаров В.В., Пивоварова Л.М., Рубашкин В.Ш. Логико-лингвистический анализ текстов определений в энциклопедических и толковых словарях // Сучасні технології комп’ютерної лексикографії (на матеріалах міжнародної конференції «MegaLing’2009») : Зб. наук. пр. / НАН України, Укр. мовно-інформ. фонд [та ін.]; редкол.: Ю. Д. Апресян [та ін.].— К. : Довіра, 2009
Рубашкин В.Ш., Бочаров В.В., Пивоварова Л.М., Чуприн Б.Ю. Опыт автоматизированного пополнения онтологий с использованием машиночитаемых словарей // Компьютерная лингвистика и интеллектуальные технологии: По материалам ежегодной Международной конференции «Диалог» (Бекасово, 26-30 мая 2010 г.). Вып. 9 (16). - М.: Изд-во РГГУ, 2010.

Система автоматического пополнения онтологии на основе

Слайд 35

Пополнение онтологий

Пополнение онтологий – бутылочное горлышко инженерии знаний
Ontology Learning – автоматическое пополнение

Пополнение онтологий Пополнение онтологий – бутылочное горлышко инженерии знаний Ontology Learning –
онтологии на основе естественно-языковых текстов

Слайд 36

Источник

Российский энциклопедический словарь - Гл. ред.: А. М. Прохоров — М.: Большая

Источник Российский энциклопедический словарь - Гл. ред.: А. М. Прохоров — М.:
Российская энциклопедия, 2001
исключены персоналии, географические названия и другие имена собственные
26375 словарных статей, 21782 различных терминов

Слайд 37

Гипотеза

В большинстве случаев родовой по отношению к определяемому термин представлен первым по

Гипотеза В большинстве случаев родовой по отношению к определяемому термин представлен первым
порядку существительным (именной группой) в именительном падеже.
АГРАФ - нарядная заколка для волос, с помощью которой крепили в прическах перья, цветы, искусственные локоны и т. д.

Слайд 38

Примеры
ПЕРИСТИЛЬ - прямоугольный двор, сад, площадь, окруженные с 4 сторон крытой колоннадой.
ЯТАГАН

Примеры ПЕРИСТИЛЬ - прямоугольный двор, сад, площадь, окруженные с 4 сторон крытой
- рубяще-колющее оружие (среднее между саблей и кинжалом) у народов Ближнего и Среднего Востока (известно с 16 в.).

Слайд 39

Общий алгоритм анализа

Общий алгоритм анализа

Слайд 40

сокращения (разворачиваются в полные слова, если это возможно)
пометы (удаляются)
текст в скобках (удаляется)

Лексикографическая

сокращения (разворачиваются в полные слова, если это возможно) пометы (удаляются) текст в скобках (удаляется) Лексикографическая обработка
обработка

Слайд 41

АБРЕКИ - В прошлом у народов Сев. Кавказа изгнанники из рода, ведшие

АБРЕКИ - В прошлом у народов Сев. Кавказа изгнанники из рода, ведшие
скитальческую или разбойничью жизнь

АБРЕКИ - В прошлом у народов Северного Кавказа изгнанники из рода, ведшие скитальческую или разбойничью жизнь

АКСЕЛЕРАЦИЯ - (В антропологии) ускорение роста и полового созревания детей и подростков

АКСЕЛЕРАЦИЯ - ускорение роста и полового созревания детей и подростков

Лексикографическая обработка

Слайд 42

Используются компоненты АОТ
Упрощённые правила (Tomita-формализм)
Строится дерево зависимостей

Синтаксический анализ

Используются компоненты АОТ Упрощённые правила (Tomita-формализм) Строится дерево зависимостей Синтаксический анализ

Слайд 43

ПРИЛАГАТЕЛЬНОЕ + ИМЕННАЯ ГРУППА
[ANP] -> [ADJ] [NP root]
: $0.grm := case_number_gender($1.grm, $2.type_grm,

ПРИЛАГАТЕЛЬНОЕ + ИМЕННАЯ ГРУППА [ANP] -> [ADJ] [NP root] : $0.grm :=
$2.grm);
ГЕНИТИВНАЯ ГРУППА
[GP] -> [NP root] [NP grm="рд"];
ПРЕДЛОЖНАЯ ГРУППА
[PP] -> [PREP root] [NP];
ИМЕННАЯ ГРУППА
[NP] -> [NOUN];
[NP] -> [NP root] [PP] ;
[NP] -> [PP] | [GP] | [ANP];

Упрощенные правила

Слайд 44

ПРИЛАГАТЕЛЬНОЕ + ИМЕННАЯ ГРУППА
ВОДОРОД - ХИМИЧЕСКИЙ ЭЛЕМЕНТ
ХАЛАТ – ВЕРХНЯЯ ОДЕЖДА
ГЕНИТИВНАЯ ГРУППА
АМПЕР -

ПРИЛАГАТЕЛЬНОЕ + ИМЕННАЯ ГРУППА ВОДОРОД - ХИМИЧЕСКИЙ ЭЛЕМЕНТ ХАЛАТ – ВЕРХНЯЯ ОДЕЖДА
ЕДИНИЦА ИЗМЕРЕНИЯ
АБЗАЦ – ЧАСТЬ ТЕКСТА
ПРЕДЛОЖНАЯ ГРУППА
АВАЛЬ - ПОРУЧИТЕЛЬСТВО ПО ВЕКСЕЛЮ
АКСЕЛЕРОМЕТР – ПРИБОР ДЛЯ ИЗМЕРЕНИЯ УСКОРЕНИЯ

Слайд 45

Синтаксический анализ: снятие неоднозначности

Синтаксический анализ: снятие неоднозначности

Слайд 46

о чукотском море
море
МОРЕ (ср.р.)
МОР (мр.р.)
МОРА (жр.р.)
МОРА отбрасывается после синтаксического анализа

Неоднозначность: пример

о чукотском море море МОРЕ (ср.р.) МОР (мр.р.) МОРА (жр.р.) МОРА отбрасывается

Слайд 47

АВАНПОРТ - внешняя часть порта, предназначенная для стоянки судов, ожидающих подхода к

АВАНПОРТ - внешняя часть порта, предназначенная для стоянки судов, ожидающих подхода к
причалам, погрузки и разгрузки.
ШНЕК - название винтового конвейера.
ПАРАБОЛОГРАФ - прибор для вычерчивания плоских кривых 2-го порядка (парабол).

Отношение между термином и определением

Слайд 48

Типы выделяемых отношений

Типы выделяемых отношений

Слайд 49

Правила

приписывается конкретному опорному слову
описывает на какой тип отношений указывает данное слово
следует

Правила приписывается конкретному опорному слову описывает на какой тип отношений указывает данное
ли сохранять данное слово в качестве опорного или необходимо отбросить его и перейти к следующему, указанному правилом.

Слайд 50

Примеры правил: тождество

Обозначение
Тип отношения меняется на Same
Записывается следующее (по дереву) существительное
СОЦИОСФЕРА -

Примеры правил: тождество Обозначение Тип отношения меняется на Same Записывается следующее (по
обозначение человечества, общества, а также освоенной человеком природной среды, в совокупности составляющих часть географической оболочки.

Слайд 51

Явление
Записывается «явление»
Тип отношения меняется на Same
Записывается следующее (по дереву) существительное
СИНЕСТЕЗИЯ - явление

Явление Записывается «явление» Тип отношения меняется на Same Записывается следующее (по дереву)
восприятия, когда при раздражении данного органа чувств наряду со специфическими для него ощущениями возникают и ощущения , соответствующие другому органу чувств.

Примеры правил: тождество

Слайд 52

Явление
Записывается «явление»…
атмосферное явление, физическое явление
ИЗОМЕРИЯ - явление, заключающееся в существовании изомеров -

Явление Записывается «явление»… атмосферное явление, физическое явление ИЗОМЕРИЯ - явление, заключающееся в
соединений, одинаковых по составу и молекулярной массе, но различающихся по строению или расположению атомов в пространстве.

Зачем нужен первый пункт

Слайд 53

Записать – <имя отношения> - следующее существительное
<имя отношения> - следующее существительное
Сложные правила

Общий

Записать – - следующее существительное - следующее существительное Сложные правила Общий вид правил
вид правил

Слайд 54

Род, вид, сорт…
- следующее существительное.
ФИЛЬДЕПЕРС - высший сорт фильдекоса.
ПИДЖИНЫ - тип

Род, вид, сорт… - следующее существительное. ФИЛЬДЕПЕРС - высший сорт фильдекоса. ПИДЖИНЫ
языков, используемых как средство межэтнического общения в среде разноязычного населения.

Примеры правил: обобщение

Слайд 55

Жанр
Записать - - следующее существительное.
МИСТЕРИЯ - жанр средневекового западноевропейского религиозного театра.

Примеры

Жанр Записать - - следующее существительное. МИСТЕРИЯ - жанр средневекового западноевропейского религиозного театра. Примеры правил: обобщение
правил: обобщение

Слайд 56

Совокупность
- следующее существительное.
АРХИВ - совокупность документов, образовавшихся в результате деятельности учреждений,

Совокупность - следующее существительное. АРХИВ - совокупность документов, образовавшихся в результате деятельности
предприятий и отдельных лиц.

Примеры правил: часть

Слайд 57

Cкопление
Записать - - следующее существительное.
ГАНГЛИЙ - анатомически обособленное скопление нервных клеток

Cкопление Записать - - следующее существительное. ГАНГЛИЙ - анатомически обособленное скопление нервных
, волокон и сопровождающей их ткани .
НО:
ПНЕВМОТОРАКС - скопление воздуха или газов в полости плевры.

Примеры правил: часть

Слайд 58

Часть
- следующее существительное.
АЛГЕБРА - часть математики , развивающаяся в связи с

Часть - следующее существительное. АЛГЕБРА - часть математики , развивающаяся в связи
задачей о решении алгебраических уравнений.

Примеры правил: целое

Слайд 59

Участок
Записать - - следующее существительное.
АНТИКОДОН - участок транспортной РНК, состоящий из

Участок Записать - - следующее существительное. АНТИКОДОН - участок транспортной РНК, состоящий
трех нуклеотидов.
НО:
ИМЕНИЕ - земельный участок с усадьбой.

Примеры правил: целое

Слайд 60

Метод, способ
- следующее существительное.
ЗАИЛЕНИЕ - метод мелиорации песчаных земель.
СГРАФФИТО -

Метод, способ - следующее существительное. ЗАИЛЕНИЕ - метод мелиорации песчаных земель. СГРАФФИТО
способ декоративной отделки стен, при котором рисунок процарапывается в верхнем слое штукатурки и обнажается нижний слой, отличающийся по цвету.

Примеры правил: инструмент/назначение

Слайд 61

Орудие
Записать - - следующее существительное.
ПЕРЕМЕТ - орудие лова рыбы (главным образом

Орудие Записать - - следующее существительное. ПЕРЕМЕТ - орудие лова рыбы (главным
хищной).
НО:
артиллерийское орудие
орудие труда

Примеры правил: инструмент/назначение

Слайд 62

Инструмент, прибор, аппарат…
Записать
Перейти к следующему предлогу
Если это для: Func – следующее существительное.
ФЕН

Инструмент, прибор, аппарат… Записать Перейти к следующему предлогу Если это для: Func
- электрический аппарат для сушки волос.

«Сложные» правила

Слайд 63

Записать - - следующее существительное.
АБОРТ - прерывание беременности в сроки до

Записать - - следующее существительное. АБОРТ - прерывание беременности в сроки до
28 недель (то есть до момента, когда возможно рождение жизнеспособного плода).
ХОМИНГ - способность животного возвращаться со значительного расстояния на свой участок обитания, к гнезду, логову и т. д.

Другие типы отношений

Слайд 64

Другие типы отношений

Другие типы отношений

Слайд 65

18 правил
91 опорное слово, для которого существуют правило
8484 статей, для которых используются
4679

18 правил 91 опорное слово, для которого существуют правило 8484 статей, для
различных опорных слов
1978 опорных терминов

Правила: резюме

Слайд 66

Экспертная оценка, 200 словарных статей
90% случаев (179 статей) решения совпали с результатами,

Экспертная оценка, 200 словарных статей 90% случаев (179 статей) решения совпали с
полученными автоматически
21 случай ошибок:
16 случаев – неточности алгоритма
5 случаев – опорное слово отсутствует в тексте определений

Оценка

Слайд 67

АБРАЗИВНЫЙ ИНСТРУМЕНТ - служит для механической обработки ( шлифование, притирка и другие

АБРАЗИВНЫЙ ИНСТРУМЕНТ - служит для механической обработки ( шлифование, притирка и другие
).
АВОГАДРО ЗАКОН - в равных объемах идеальных газов при одинаковых давлении и температуре содержится одинаковое число молекул.
АБИТУРИЕНТ - в большинстве стран - оканчивающий среднее учебное заведение.

Слайд 68

Результаты логико-лингвистического анализа представляются в виде таблицы

единица ? измерения

Пополнение онтологии

Результаты логико-лингвистического анализа представляются в виде таблицы единица ? измерения Пополнение онтологии

Слайд 69

Указание базового концепта онтологической таксономии
Формирование энциклопедической выборки
Добавление терминов выборки
Постредактирование

Процедура пополнения

Указание базового концепта онтологической таксономии Формирование энциклопедической выборки Добавление терминов выборки Постредактирование Процедура пополнения

Слайд 70

Базовый концепт: СУДНО
Энциклопедическая выборка:
балкер баржа барк барка баркас баркентина брандвахта брандер бриг

Базовый концепт: СУДНО Энциклопедическая выборка: балкер баржа барк барка баркас баркентина брандвахта
бригантина бригантина газовоз газотурбоход галера галион глиссер джонка дизель-электроход землесосный снаряд землечерпальный снаряд иол катамаран катамаран кеч килектор клинкер клипер ковчег корабль военный коч кунгас ледокол лихтер лодка нис пароход парусное судно плашкоут понтон приз прорезь рыбоконсервная плавучая база рыбопромысловая база сейнер скампавея струг суда обеспечения судно на воздушной подушке судно на подводных крыльях судно научно-исследовательское тендер теплоход траулер тримаран турбоход шлюп шхуна электроход яхта
С учетом отношения НИЖЕ:
ШЛЮПКА: баркас вельбот гичка туз
БАРЖА: шаланда

Пополнение онтологии: пример

Имя файла: Извлечение-информации.pptx
Количество просмотров: 169
Количество скачиваний: 1