Содержание
- 2. 1971 год- 4004 Первый процессор был представлен публике 15 ноября 1971 года. В то время реализация
- 3. 1972 год- 8008 8008 был разработан в апреле 1972 года и стал первым 8-битным микропроцессором. Он
- 4. 1973 год- 8080 Основные идеи архитектуры были взяты с его предшественника, 8008, - но внутренняя организация
- 5. 1976 год - 8086 Первый 16-битный процессор. Он содержал рекордное по тому времени количество транзисторов -
- 6. 1977 год - 8088 Через год после презентации 8086, Intel объявила о разработке его более дешевого
- 7. HYPERION 8088 portible boxtop 5 inch CRT display, 300 k ram, dual 360K floppys A m
- 8. 1982 год - 286 В 1982 году фирма Intel сделала крупный шаг в разработке новых идей:
- 9. IBM PS/2 55SX производство компьютеров на его основе началось только в 1984-м. Новые компьютеры стали называться
- 10. 1982 год - 386 Обладая полностью 32-битной архитектурой, 386-й процессор адресовал до 4 Гб (232 байт)
- 11. Intel 80386SX + 80387SX, 20 MHz 4 MByte Expandable up to 16 MByte 102 MB Hard
- 12. 1989 год- 486 Первый процессор на котором стала возможной полноценная работа с мультимедиа. В поисках способа
- 13. КОНВЕЙЕР Конвейер процессора i486 имел 5 ступеней Справедливости ради стоит отметить, что Intel не изобретала конвейеры,
- 14. ВСТРОЕННЫЙ СОПРОЦЕССОР Сопроцессор (FPU, Floating-Point Unit) помогает основному процессору выполнять математические операции над вещественными числами. Начиная
- 15. 1993 год - Pentium Появившийся в 1993 году процессор Pentium ознаменовал собой новый этап в развитии
- 16. Pentium имеет 2 целочисленных конвейера - u и v. Правда, они не равноценны: главным считается u-конвейер,
- 17. FPU 2-е по значимости отличие Pentium от 486-го - быстрый сопроцессор (FPU). С появлением Pentium стало
- 18. 1995 год – Pentium Pro Процессор Intel шестого поколения, совместимый с архитектурой, x86. Процессор был анонсирован
- 19. Технические характеристики ядра P6 Тактовые частоты (МГц): 150, 166, 180, 200 Частота системной шины (FSB) (МГц):
- 20. 1997 год – Pentium II Процессоры Intel шестого поколения, построенный на архитектуре x86 и анонсированный 7
- 21. Deschutes 26 января 1998 года Intel анонсировала процессор Pentium II, построенный на новом ядре, носящее кодовое
- 22. Технические характеристики различных ядер Данные относящиеся ко всем моделям Адресуемая память: 64 Гбайт Разрядность регистров: 32
- 23. Tonga Тактовые частоты (МГц): 233, 266, 300 Частота системной шины (FSB) (МГц): 66 Размер кэша L1
- 24. 1998 год – Celeron Celeron — большое семейство бюджетных x86-совместимых процессоров компании Intel. Семейство Celeron предназначалось
- 25. Covington Первые процессоры семейства Celeron были выпущены на ядре Covington, представляющее собой ядро Deschutes без кэша
- 26. 1999 год – Pentium III Как и в случае с Pentium II, компания Intel выпустила несколько
- 27. Coppermine 25 октября 1999 года корпорация Intel выпускает новую версию Pentium III, построенную на новом ядре
- 28. 1999 год – Celeron Coppermine-128 Процессор относится к семейству Pentium III Celeron. Часто, чтобы отличать процессоры
- 29. Tualatin Следующая серия процессоров Celeron была построена на ядре Tualatin. В новом Celeron`е Intel использовала кэш-память
- 30. Технические характеристики различных ядер Данные относящиеся ко всем моделям Разрядность регистров: 32 Разрядность внешней шины: 64
- 31. Coppermine для Socket 370 Дата анонса первой модели: 25 октября 1999 года Тактовые частоты (МГц): 500,
- 33. Скачать презентацию
Слайд 21971 год- 4004
Первый процессор был представлен публике 15 ноября 1971 года.
1971 год- 4004
Первый процессор был представлен публике 15 ноября 1971 года.
Первый микропроцессор имел 4-битную архитектуру и состоял из 2300 транзисторов. При этом стандартно он работал на частоте 108 КГц (отдельные экземпляры разгонялись до 740 КГц) Техпроцесс по сегодняшним меркам был ужасно "толстым" - целых 10 мкм. Несмотря на то что в компьютерах этот процессор не нашел применения, он все же использовался в калькуляторах Busicom и в различных системах управления (например, уличными светофорами). Через год (1972) был выпущен 4040. Он представлял собой улучшенную версию 4004 - главным нововведением была поддержка прерываний. Кроме того, добавилось 14 новых инструкций и глубина стека была увеличена до 8 уровней, а память команд до 8 Кб.
Слайд 31972 год- 8008
8008 был разработан в апреле 1972 года и стал
1972 год- 8008
8008 был разработан в апреле 1972 года и стал
Слайд 41973 год- 8080
Основные идеи архитектуры были взяты с его предшественника,
1973 год- 8080
Основные идеи архитектуры были взяты с его предшественника,
Восьмидесятка" обладала семью 8-битными регистрами (именовавшимися A - E, H и L, - причем пары BC, DE и HL могли быть скомбинированы в 16-битные регистры). Кроме того, был улучшен техпроцесс, он составил 6 мкм. Количество транзисторов: 6000. Тактовая частота достигла 2 МГц
Помимо всего прочего 8080 послужил основой первому персональному компьютеру Альтаир-8800. Выпущенный в 1975 году фирмой MITS "Альтаир" стоил $439 ($621 в сборке). Клавиатура и монитор в стандартный комплект не входили, оперативная память составляла всего 256 байт (да-да, именно байт, а не килобайт), правда позже стали продаваться блоки расширенной памяти (от 1 до 4 Кб). Тогда же фирмой Digital Research была написана операционная система CP/M. Программисты "Альтаира" умудрялись писать даже игры, а Билл Гейтс и Пол Аллен - написали интерпретатор Бейсика
Слайд 51976 год - 8086
Первый 16-битный процессор. Он содержал рекордное по тому времени
1976 год - 8086
Первый 16-битный процессор. Он содержал рекордное по тому времени
Память 8086 была также доработана: весь мегабайт оперативной памяти не представлялся единым полем, а был разделен на 16 сегментов величиной по 64 Кб. Таким образом, память 8086 можно было представить как объединенную вместе память нескольких 8080. При этом впервые в истории микропроцессоров программа перестала работать непосредственно с одним физическим адресом ячейки памяти. У 86-го процессора было всего 14 регистров. Из них 4 регистра общего назначения (AX, BX, CX, DX), 2 индексных (SI, DI), 2 указательных (BP, SP), 4 сегментных (CS, SS, DS, ES), регистр следующей инструкции IP и регистр флагов (состояний процессора) FLAGS. Все они были 16-битными. Несмотря на то, что они являлись частями целых 16-битных регистров, их можно было использовать как отдельные 8-битные. Благодаря этому, программы, разработанные под 8080, можно было с минимальной переделкой использовать и на 8086 процессоре.
Слайд 61977 год - 8088
Через год после презентации 8086, Intel объявила о разработке
1977 год - 8088
Через год после презентации 8086, Intel объявила о разработке
Слайд 7HYPERION 8088 portible boxtop
5 inch CRT display, 300 k ram, dual
HYPERION 8088 portible boxtop
5 inch CRT display, 300 k ram, dual
A m s t r a d 8 0 8 6 (PC)
512K Memory, 32 MB HD, CGA-monitor and graphics card, One 5 1/4" drive, One 3,5" drive (720Kb disc's)
S i n c l a i r Q L
Printer, TV as monitor
Motorola 68008 at 7.5MHz, 128k RAM (Max 640k) 32k ROM
Слайд 81982 год - 286
В 1982 году фирма Intel сделала крупный шаг в
1982 год - 286
В 1982 году фирма Intel сделала крупный шаг в
Параметры 286-го чипа:134 000 транзисторов, техпроцесс 1.5 мкм, 68 контактных ножек, 16-битная шина данных, 24-битная адресная шина (до 16 Мб физической памяти), 19 "видимых" регистров и 6 "невидимых" Максимальный размер виртуальной памяти (файл подкачки) составил 1008 Мб. Стартовая частота - 6 МГц, затем были созданы модели с частотами от 10 до 25 МГц. Некоторые операции 286-й научился выполнять за меньшое число тактов. Процессор 286 с тактовой частотой 12.5 МГц работал примерно в 6 раз быстрее, чем 8086 с частотой 4.77 МГц. Команда push научилась сохранять в стеке константы. Шины адреса и данных теперь стали раздельными, а не совмещенными на одном множестве ножек. Как и в 8086-м новый процессор имел 6-байтную очередь команд - что-то вроде прообраза будущих конвейеров.
Слайд 9IBM PS/2 55SX
производство компьютеров на его основе началось только в 1984-м. Новые
IBM PS/2 55SX
производство компьютеров на его основе началось только в 1984-м. Новые
К сожалению, защищенный режим 286-го обладал и недостатками:
Несмотря на возможность адресовать 16 Мб памяти, максимальный размер сегмента остался по-прежнему равным 64 Кб, затрудняя программистам работу с большими массивами данных.
Режим работы с виртуальной памятью не был толком продуман - отсутствовал "прозрачный" для приложений способ перемещения данных операционной системой из памяти на жесткий диск - для реализации этого программам приходилось прибегать к разным ухищрениям вроде "запирания" и "отпирания" указателей на блок памяти.
В защищенном режиме отсутствовала совместимость с программами, написанными для реального режима MS-DOS.
Переход из реального режима в защищенный был односторонним, для обратного перехода требовалась перезагрузка компьютера.
Commodore PC-Compatibles (80286 based)
Слайд 101982 год - 386
Обладая полностью 32-битной архитектурой, 386-й процессор адресовал до 4
1982 год - 386
Обладая полностью 32-битной архитектурой, 386-й процессор адресовал до 4
Умножение двух 16-битных чисел командой MUL R16 выполнялось, в зависимости от числа единичных разрядов, за 9-22 такта. Для сравнения: то же у 286-го срабатывало всегда за 21 такт, а у 86-го аж за 118-133 такта! Математический сопроцессор 80387 не остался в стороне и тоже был оптимизирован - если 287-й выполнял команду извлечение корня FSQRT за 180-186 тактов, то 387-й чип справлялся с этой задачей уже за 122-129 тактов. В среднем количество тактов, необходимых для выполнения команд, уменьшилось в полтора-два раза в сравнении с 286-м и в 3-8 раз в сравнении с оригинальным IBM PC. Кроме того, добавилось несколько продвинутых команд сопроцессора, например вычисление синуса, косинуса и логарифмов.
Первые процессоры стали работать с наивысшей частотой, достигнутой к тому времени для 286-го - 16 МГц, затем появилась 20 МГц модель (16 февраля 1987), а к середине 1988 года предел был отодвинут до 25 МГц (4 апреля 1988). В начале 90-х популярность приобрели 33 МГц модели (10 апреля 1989) Защищенный режим 386-го был существенно доработан. Модель 286-го в целом была сохранена, но добавилось три очень важных аспекта: сколь угодно большой размер сегмента, страничный режим адресации (Page Addressing) и режим виртуального 8086. Все эти аспекты используются операционными системами Windows 95/NT и без них они работать не смогут. Кроме того, 386-й "научился" возвращаться обратно из защищенного режима в реальный без перезагрузки компьютера
Слайд 11Intel 80386SX + 80387SX, 20 MHz
4 MByte Expandable up to 16 MByte
102
Intel 80386SX + 80387SX, 20 MHz
4 MByte Expandable up to 16 MByte
102
Снятие ограничения на размер сегмента (вообще-то он ограничен четырьмя гигабайтами, но по-моему для компьютерного ОЗУ это почти бесконечность) тесно связано со страничной организацией памяти. Без использования страниц ограничение на размер остается, правда уже не в 64 Кб как у 86/286, а в 1 Мб. Это объясняется тем, что для указания размера сегмента в таблице дескрипторов отведено 20 бит (у 286-го 16 бит). 220 дает нам 1 Мб комбинаций. Но в дескрипторе сегмента 386-й машины появился очень интересный бит - бит гранулярности. При его включении процессор начинает понимать размер сегмента не в байтах, а в страницах по 4 Кб (4096 байт). Минимальный размер сегмента в этом случае будет равен 4 Кб (1 * 4 Кб), а максимальный - 4 Гб (1 Мб * 4 Кб)
Процессор неправильно выполнял некоторые операции с 32-битными числами, в частности, умножение. Intel моментально устранила ошибку и микросхемы, изготовленные после апреля 1987 года ее не имели, а уже вышедшие чипы были промаркированы "только для 16-битных операций". При попытке установить на такой компьютер Windows 95, Setup выдает сообщение об ошибке "B1". Отличительный признак исправленных процессоров - все они маркируются двойным символом "сигма".
И напоследок кое-что о процессоре 386SX. Он был представлен 16 июня 1988 года как недорогая альтернатива полноценному 80386, который с этого момента стал называться 386DX. в 16-битных приложениях 386SX отставал от старшего брата всего на 10-20%, но в 32-битных разница была существеннее - 50-70%. Поэтому Windows 95 не имело большого смысла ставить на 386SX, в то время как на DX-версию это было вполне оправдано (в случае 8 или более мегабайт памяти). Кроме того, в SX-версию нельзя было добавить свыше 16 Мб оперативной памяти - следствие урезанной до 24 бит адресной шины
Слайд 121989 год- 486
Первый процессор на котором стала возможной полноценная работа с мультимедиа.
В
1989 год- 486
Первый процессор на котором стала возможной полноценная работа с мультимедиа.
В
КЭШ
В 486-м процессоре появился внутренний кэш объемом 8 Кб, единый для данных и инструкций. Кэш имел 4-канальную наборно-ассоциативную архитектуру и работал на уровне физических адресов памяти. Он содержал 128 наборов по 4 строки размером по 16 байт. Кэш умел работать только со строками, и если процессор требовал какой-нибудь байт, отсутствующий в кэше, то кэш-контроллер загружал из ОЗУ всю 16-байтную строку, содержащую необходимый байт.
Процессор i486 мог использовать и внешний кэш (вне микросхемы процессора). У 486 появлся 2-х уровневое кэширования: кэш, интегрированный в ядро процессора, стал называться кэшем первого уровня (L1), а кэш наружный, находящийся на материнской плате, - кэшем второго уровня (L2). Очевидно, что кэш первого уровня функционирует быстрее второго. Объем кэша L2 в зависимости от материнской платы составлял от 256 до 512 Кб. В системных платах 386-х моделей наружный кэш обычно не превышал 128 Кб (типичный объем - 64 Кб). В марте 1994-го Intel, выпустив 486DX4, увеличила объем кэша L1 до 16 Кб
Слайд 13КОНВЕЙЕР
Конвейер процессора i486 имел 5 ступеней Справедливости ради стоит отметить, что Intel
КОНВЕЙЕР
Конвейер процессора i486 имел 5 ступеней Справедливости ради стоит отметить, что Intel
Слайд 14ВСТРОЕННЫЙ СОПРОЦЕССОР
Сопроцессор (FPU, Floating-Point Unit) помогает основному процессору выполнять математические операции над
ВСТРОЕННЫЙ СОПРОЦЕССОР
Сопроцессор (FPU, Floating-Point Unit) помогает основному процессору выполнять математические операции над
КОЭФФИЦИЕНТ УМНОЖЕНИЯ
Коэффициент умножения - это число на которое надо умножить тактовую частоту материнской платы, чтобы получить частоту работы самого процессора. Но к 486-м, появившимся в 1989 году, он не имел отношения. Эти процессоры работали на частоте системной платы, также как и 386-е. Первым процессором, функционирующим на удвоенной частоте материнской платы, стал i486DX2-50, объявленный 3 марта 1992 года. Коэффициент умножения - одно из важнейших улучшений и оно тесно переплетается с внутренним кэшем. Без кэша вводить коэффициент почти бессмысленно. Именно появление i486DX2-50 и материнских плат, поддерживающих разные частоты шины и коэффициенты умножения, заложило основу для практического "разгона" процессоров.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ
Тактовая частота-25, 33, 50, 66, 75, 100 МГц. Шина 32 бит, 1,25 млн. транзисторов. Техпроцесс 1 мкн., адресуемая память 4 Гб. Виртуальная 64 Тб. Встроенный КЭШ 1 уровня. Конвейер. FPU
Слайд 151993 год - Pentium
Появившийся в 1993 году процессор Pentium ознаменовал собой новый
1993 год - Pentium
Появившийся в 1993 году процессор Pentium ознаменовал собой новый
двухпотоковая суперскалярная организация, допускающая параллельное выполнение пары простых команд;
наличие двух независимых двухканальных множественно-ассоциативных кэшей для команд и для данных, обеспечивающих выборку данных для двух операций в каждом такте;
динамическое прогнозирование переходов;
конвейерная организация устройства плавающей точки с 8 ступенями;
двоичная совместимость с существующими процессорами семейства 80x86.
СУПЕРСКАЛЯРНОСТЬ
Конвейер Pentium содержит эти же этапы что и конвейер процессора 486, но самих конвейеров прибавилось. Новая микросхема стала первым процессором Intel, способным выполнять за такт СРАЗУ ДВЕ инструкции. Архитектура, при которой процессор имеет несколько конвейеров, получила название "суперскалярной", в противовес старой, одноконвейерной, т.е. "скалярной" архитектуре.
Слайд 16Pentium имеет 2 целочисленных конвейера - u и v. Правда, они не
Pentium имеет 2 целочисленных конвейера - u и v. Правда, они не
Упрощенная блок схема процессора Pentium
ПРЕДСКАЗАНИЕ ПЕРЕХОДОВ
У конвейерной архитектуры одно слабое место: при выполнении команд, чтобы выбрать из памяти следующую, иногда нужно знать результат выполнения текущей. Дело в том, что некоторые команды (например, условного перехода) нарушают порядок выполнения инструкций, приказывая процессору "перепрыгнуть" не на следующую по порядку команду, а на какую-то другую. В любой мало-мальски сложной программе это встречается сплошь и рядом. В простейшем случае (как в 486-м) конвейер будет ждать выполнения команды, определяющей адрес следующей инструкции, и лишь затем приступит к выборке. В Pentium же появилось интересное новшество branch prediction - предсказание переходов. Процессор запоминает статистику последних 256 переходов и на ее основе выдает предположение о следующем. Если переход был предсказан верно, удается избежать простоя, если нет - конвейер полностью очищается и начинает заполняться снова (на что тратится время).
Слайд 17FPU
2-е по значимости отличие Pentium от 486-го - быстрый сопроцессор (FPU).
С появлением
FPU
2-е по значимости отличие Pentium от 486-го - быстрый сопроцессор (FPU).
С появлением
Причина ускорения сопроцессора кроется в его новой конвейерной архитектуре. Инструкции FPU сначала проходят по u-конвейеру до ступени D2 включительно, после чего сворачивают на ступени X1, X2 и WF конвейера FPU (на схеме). Причем инструкции на целочисленном конвейере могут продвигаться во время просчета длительных инструкций FPU - именно с учетом этого был оптимизирован Quake. Почему конвейер сопроцессора сам не выбирает инструкции? В основном из-за вопросов совместимости, а отчасти - чтобы не заниматься проблемами адресации в защищенном режиме, эту сложную рутину делает основной процессор.
Другая причина ускорения, пусть и не столь важная, - увеличение шины данных до 64 бит. Внешняя шина данных - это магистраль, передающая информацию между процессором и памятью. Особо заметно увеличение шины проявилось в серьезных программах, наподобие AutoCAD или Corel Draw.
КЭШ
С кэшем ситуация неоднозначная. Разумеется, он стал быстрее (в основном, благодаря объему), но появились и минусы. Сначала о главном: кэш L1 в Pentium стал раздельным и увеличился с 8 до 16 Кб - по 8 Кб на кэш команд и кэш данных. Оба кэша поддерживают политику отложенной записи (Write Back), хотя в кэш команд запись обычно не производится.
Нельзя сказать, что это однозначно хорошо. Не случайно процессоры M1 фирмы Cyrix имели общий кэш L1 и в задачах, не требующих интенсивных FPU-вычислений, показывали отличную производительность. Скорее всего, это разделение в Pentium было мотивировано упрощением схем некоторых ступеней конвейеров (ступени PF и WB).
Еще один минус: строки кэша стали 32-байтными (в 486-м строки 16-байтные). С одной стороны, это снизило число "служебных" транзисторов, а с другой - привело к небольшому падению эффективности.
Слайд 181995 год – Pentium Pro
Процессор Intel шестого поколения, совместимый с архитектурой, x86.
1995 год – Pentium Pro
Процессор Intel шестого поколения, совместимый с архитектурой, x86.
Процессоры, выпущенные под маркой Pentium Pro, выпускались только на одном ядре, известным под кодовым названием P6. Были выпущены модели с тактовой частотой 150, 166, 180 и 200 МГц. Также был выпущен инженерный образец с частотой 133 МГц
Несмотря на название Pentium это ядро сильно отличалось от всех предыдущих. Помимо абсолютно новой архитектуры, разработанной независимо от процессоров пятого поколения этот процессор отличало применение технологии динамического исполнения (изменения порядка исполнения инструкций) и архитектура двойной независимой шины (DIB), благодаря чему сняты ограничения на пропускную способность памяти. Процессор был заключен в 387-контактный корпус типа SPGA, устанавливаемый в Socket 8
В одном корпусе размещалось сразу два кристалла — само ядро процессора и кэш-память L2. Кроме того, была добавлена ещё одна шина, которая соединяла процессор с кэшем L2. В результате всего этого был впервые применён кэш L2, работающий на частоте ядра. Кэш первого уровня составлял 16Кб, а кэш L2 первоначально имел размер 256Кб (так же выпускался процессор Pentium Pro 200 с кэшем L2 объемом 512Кб), однако, 18 августа 1997 года был анонсирован процессор Pentium Pro 200 с 1Мб кэша L2 на борту.
Слайд 19Технические характеристики ядра P6
Тактовые частоты (МГц): 150, 166, 180, 200
Частота системной шины
Технические характеристики ядра P6
Тактовые частоты (МГц): 150, 166, 180, 200
Частота системной шины
Размер кэша L1 (Кбайт): 8 (для данных)+8 (для инструкций)
Напряжение питания: 3,1 или 3,3 В
Количество транзисторов в ядре (млн.): 5,5
Площадь кристалла ядра (кв. мм): 195 или 306
Адресуемая память: 64 Гбайт
Разрядность регистров: 32
Разрядность внешней шины: 64
Разрядность шины адреса: 36
Размер кэша L2(Кбайт): 256 Кбайт (для Pentium Pro 200 также 512Кб и 1Мб)
Максимальное тепловыделение (Вт): 47
Техпроцесс (нм): 600 и 350
Разъём: Socket 8
Корпус: 387-контактный SPGA
Слайд 201997 год – Pentium II
Процессоры Intel шестого поколения, построенный на архитектуре x86
1997 год – Pentium II
Процессоры Intel шестого поколения, построенный на архитектуре x86
Первые модели Pentium II были предназначены для рынка персональных компьютеров и изготавливались на ядре Klamath. Однако через некоторое время вышли процессоры Pentium II предназначенные для переносных компьютеров (ноутбуки), вышил первые процессоры Xeon построенные на тех же ядрах, что и Pentium II, кроме того, появились новые процессоры под маркой Celeron, представляющие собой урезанный Pentium II.
Klamath
Данное ядро является эволюционным продолжением ядра P6, на котором был построен Pentium Pro. В него было добавлен блок MMX, модернизировано ядро, теперь с 16-битными приложениями этот процессор работал значительно быстрее Pentium Pro. Архитектура двойной независимой шины (DIB) была реализована и в Pentium II. Был увеличен объем кэша L1, теперь он равнялся 32Кб, а кэш L2 теперь работал на половине частоты ядра, но её объем был удвоен и составлял 512Кб. Процессор изготавливался по 350 нм технологии и генерировал большое количество тепла, поэтому вскоре Intel выпустила Pentium II на обновленном ядре Deschutes.
Слайд 21Deschutes
26 января 1998 года Intel анонсировала процессор Pentium II, построенный на новом
Deschutes
26 января 1998 года Intel анонсировала процессор Pentium II, построенный на новом
Pentium II OverDrive
Как и раньше процессоры серии OverDrive предназначены для модернизации систем предыдущего поколения. В данном случае для модернизации систем на базе Pentium Pro. Данный процессор был построен на ядре P6T (представляет собой модифицированное ядро Deschutes) и предназначался для установки в разъем Socket 8. То есть, благодаря этому процессору можно было, не меняя материнской платы, приобрести процессор который мало чем отличался от Pentium II. Было выпущено только две модели с частотами 300МГц (шина FSB работала на частоте 60МГц) и 333МГц (с шиной FSB — 66МГц). Оба процессора были выпущены 10 августа 1998 года.
Tonga и Dixon
На основе этих ядер изготавливались мобильные процессоры Mobile Pentium II. Которые отличались от версий для персональных компьютеров пониженным напряжением питания и потребления тока, и, следовательно, имели небольшое тепловыделение, что и позволяло использовать их в ноутбуках и лэптопах.
Слайд 22Технические характеристики различных ядер
Данные относящиеся ко всем моделям
Адресуемая память: 64 Гбайт
Разрядность регистров:
Технические характеристики различных ядер
Данные относящиеся ко всем моделям
Адресуемая память: 64 Гбайт
Разрядность регистров:
Разрядность внешней шины: 64
Разрядность шины адреса: 36
Klamath
Тактовые частоты (МГц): 233, 266, 300
Частота системной шины (FSB) (МГц): 66
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 512 Кбайт, работающий на ½ частоте ядра
Напряжение питания: 2,8 В
Количество транзисторов (млн.): 7,5
Максимальное тепловыделение (Вт): 43
Техпроцесс (нм): 350
Разъём: Slot 1
Корпус: 528-контактный LGA помещенный на печатную плату и упакованный в 242-контактный картридж типа SECC
Deschutes
Тактовые частоты (МГц): 266, 300, 333, 350, 400, 450
Частота системной шины (FSB) (МГц): 66, 100
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 512 Кбайт, работающий на ½ частоте ядра
Напряжение питания (В): 2,0
Количество транзисторов (млн): 7,5
Максимальное тепловыделение (Вт): 27,1
Техпроцесс (нм): 250
Разъём: Slot 1
Корпус: 528-контактный LGA помещённый на печатную плату и упакованный в 242-контактный картридж типа SECC (позже SECC2)
Слайд 23Tonga
Тактовые частоты (МГц): 233, 266, 300
Частота системной шины (FSB) (МГц): 66
Размер кэша
Tonga
Тактовые частоты (МГц): 233, 266, 300
Частота системной шины (FSB) (МГц): 66
Размер кэша
Размер кэша L2(Кбайт): 512 Кбайт, работающий на ½ частоте ядра
Напряжение питания: 1,6 В
Количество транзисторов (млн.): 7,5
Максимальное тепловыделение (Вт): 11,6
Техпроцесс (нм): 250
Разъём: 240-контактный MMC
Корпус: 615-контактный BGA помещенный на печатную плату и упакованный в 240-контактный картридж типа MMC (Mini Cartridge Connector)
Dixon
Тактовые частоты (МГц): 266, 300, 333, 366, 400
Частота системной шины (FSB) (МГц): 66, 100
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 256 Кбайт, работающий на частоте ядра
Напряжение питания: 1,6; 1,55 или 1,5 В
Количество транзисторов (млн.): 27,4
Максимальное тепловыделение (Вт): 13,1
Техпроцесс (нм): 250
Разъём: Socket 615, либо MMC (Mobile Module Connector)
Корпус: 615-контактный BGA или mBGA.
Слайд 241998 год – Celeron
Celeron — большое семейство бюджетных x86-совместимых процессоров компании Intel.
1998 год – Celeron
Celeron — большое семейство бюджетных x86-совместимых процессоров компании Intel.
Первый процессор семейства Celeron был анонсирован 15 апреля 1998 года и был построен на основе Pentium II. Позже вышли процессоры основанные на Pentium III, Pentium 4 и Pentium M.
До выпуска Celeron`а Intel активно вытеснялась с рынка low-end такими конкурентами, как AMD, со своим процессором K6 и IDT, со своим процессором Winchip. Оба процессора были предназначены для уже устаревающей платформы Socket 7. Конкурировать с ними мог тогда только Pentium MMX, в то время, уже, позиционирующийся как процессор для low-end рынка. Но производительности Pentium MMX уже начинало не хватать, и Intel решает выпустить процессор построенный на архитектуре Pentium II и при этом с ценой привлекательной для построения малобюджетной системы. В результате Intel удалось отвоевать большую долю рынка. Процессор, как и Pentium II, выпускался для Slot 1, но использовал корпус типа SEPP, в котором нет верхней пластиковой крышки.
Слайд 25Covington
Первые процессоры семейства Celeron были выпущены на ядре Covington, представляющее собой ядро
Covington
Первые процессоры семейства Celeron были выпущены на ядре Covington, представляющее собой ядро
Mendocino
Ядро Mendocino во многом имеет ту же архитектуру, что и Katmai, хотя и выпущено раньше. Кэш L2 был интегрирован в ядро и, соответственно, размещался на одном кристалле с ядром, что позволило работать кэшу L2 на частоте ядра. Если бы не частота FSB, которая была преднамеренно уменьшена до 66 МГц, то этот процессор мог бы опередить, по производительности, и более дорогие процессоры, выпускаемые Intel. Несмотря на частоту FSB 66 МГц, этот процессоры Celeron, с частотами около 300 МГц были популярны среди оверклокеров, так как увеличение частоты FSB до 100 МГц для этих моделей не составляло труда.Чтобы отличить процессор Celeron 300 МГц, на ядре Mendocino от аналогичной модели на ядре Covington, было решено в конце названия модели на ядре Mendocino ставить букву «A» — Celeron 300A.Изначально процессор выпускался для Slot 1. Но ввиду того, что кэш L2 был интегрирован в ядро, Intel решает отказаться от Slot 1 и использования картриджей, и переходит к новому типу корпуса (PPGA) и новому разъему (PGA-370, известному так же как Socket 370), что позволило снизить себестоимость процессора и уменьшить размеры системы. Процессоры для Slot 1 продолжали выпускаться параллельно. Первый процессор Celeron для Socket 370 был выпущен. Последней моделью Celeron для Slot 1 является процессор с частотой 433 МГц, однако было выпущено множество адаптеров — переходников с Slot 1 в Socket 370. Это позволило устанавливать и более быстрые модели (466 МГц и более) в Slot 1.
Mobile Pentium II Celeron
25 января 1999 года была выпущена мобильная версия процессора Celeron, которая была выпущена на ядре Mendocino. От своего настольного собрата это ядро ничем не отличалось, кроме уменьшенного напряжения питания (1,6 В или 1,9 В). Процессоры Mobile Pentium II Celeron не поддерживают технологию энергосбережения SpeedStep
Слайд 261999 год – Pentium III
Как и в случае с Pentium II, компания
1999 год – Pentium III
Как и в случае с Pentium II, компания
Katmai
Первое ядро используемое в Pentium III. Оно во многом было аналогично ядру Deschutes, используемому в последних моделях Pentium II. Но в новом ядре был расширен набор SIMD-расширений, который теперь включал в себя набор команд известный как SSE. Был усовершенствован механизм потокового доступа к памяти. Но процессор всё ещё выпускался в корпусе SECC2 и устанавливался в разъем Slot 1. Изначально процессор работал с частотой FSB равной 100МГц, однако затем, 27 сентября 1999 года, Intel выпустила процессор, который имел шину FSB работающую на частоте 133МГц. Чтобы отличать версии процессоров, имеющих разную частоту системной шины, было решено добавлять в конце названия процессора литеру «B», которая должна обозначать процессоры имеющие системную шину 133МГц.
Слайд 27Coppermine
25 октября 1999 года корпорация Intel выпускает новую версию Pentium III, построенную
Coppermine
25 октября 1999 года корпорация Intel выпускает новую версию Pentium III, построенную
Tualatin
На новом процессоре испытали новую технологию производства — их изготавливали по 130 нм техпроцессу. Других изменений в этом ядре было не много, среди них — технология «Data Prefetch Logic», которая должна была повысить производительность, загружая в кэш-память данные, необходимые в данный момент приложению. В результате процессор оказался быстрее чем Pentium 4, работающий на большой частоте. Так как разработчики не хотели, чтобы этот процессор конкурировал с Pentium 4, они урезали кэш-память L2, в настольной версии процессора, до 256Кб. Процессоры для серверов же выпускались с 512Кб кэш-памяти L2 (у них в конце названия имеется буква «S»). Процессор был предназначен для Socket 370, но имел тип корпуса FCPGA2 (похож на первые Pentium 4) и работал, в основном, с напряжением питания 1,5 В, поэтому он не был совместим со старыми материнскими платами.
Mobile Pentium III
Мобильные версии процессора Pentium III выпускались на ядрах Coppermine и Tualatin, Эти процессоры отличались от настольных (desktop) версий пониженным напряжением питания и поддержкой технологии SpeedStep, которая уменьшала частоту ядра процессора (следовательно, и потребляемую мощность). Все процессоры серии Mobile в режиме энергосбережения также уменьшали и напряжение питания.
Слайд 281999 год – Celeron
Coppermine-128
Процессор относится к семейству Pentium III Celeron. Часто, чтобы
1999 год – Celeron
Coppermine-128
Процессор относится к семейству Pentium III Celeron. Часто, чтобы
Первые процессоры Celeron на ядре Coppermine-128 (степпинг cB0) работали при напряжении питания ядра 1,5 В, однако позже были выпущены процессоры, которые были основаны на новой ревизии ядра, и использовали напряжение 1,7 В (степпинг cC0) и 1,75 В (степпинг cD0). В отличие от процессоров на степпинге cB0 обновленные процессоры были более стабильны и легче разгонялись
Новые процессоры, как и Pentium III, производились для Socket 370 и использовали тип корпуса FC-PGA.
Mobile Pentium III Celeron
В процессорах использовались ядро Coppermine-128, но процессоры изначально использовали системную шину частотой 100МГц, а позже были выпущены процессоры и с шиной 133МГц. Процессоры серии Mobile Pentium III Celeron не поддерживают технологию SpeedStep. В серии Pentium III Celeron на ядре Coppermine-128 так же были выпущены мобильные процессоры с пониженным напряжением, предназначенные для установки в недорогие портативные мобильные ПК. Были выпущены модели Mobile Pentium III Celeron 600 L и 500 L (21 мая 2001 года). Процессоры обладали пониженным напряжением (1,35В, против 1,6 у обычной мобильной версии Celeron Coppermine-128). Были выпущены процессоры Mobile Pentium III Celeron со сверхнизким потреблением.А также Mobile Pentium III Celeron 600 U и 500 U. Процессоры серии Mobile Pentium III Celeron на ядре Coppermine-128 выпускались в 495-контактных корпусах типа mPGA2 или BGA2 и предназначались для установки, соответственно, в Socket 495 или припаивались непосредственно к материнской плате.
Слайд 29Tualatin
Следующая серия процессоров Celeron была построена на ядре Tualatin. В новом Celeron`е
Tualatin
Следующая серия процессоров Celeron была построена на ядре Tualatin. В новом Celeron`е
Mobile Pentium III Celeron
21 января 2002 года Intel выпускает процессоры Celeron на ядре Tualatin для мобильных ПК. От настольных процессоров они отличались пониженным напряжением питания. В мобильной серии Celeron`ов на ядре Tualatin были выпущены процессоры, у которых частота FSB составляла 133МГц. Как и прежде было доступно три серии процессоров: мобильные процессоры, процессоры с пониженным энергопотреблением (серия Low Voltage) и процессоры со сверхнизким энергопотреблением (серия Ultra Low Voltage). Как и раньше, процессоры серии Mobile Pentium III Celeron не поддерживают технологию SpeedStep.
Слайд 30Технические характеристики различных ядер
Данные относящиеся ко всем моделям
Разрядность регистров: 32
Разрядность внешней
Технические характеристики различных ядер
Данные относящиеся ко всем моделям
Разрядность регистров: 32
Разрядность внешней
Поддерживаемый набор инструкций: IA32, MMX, SSE
Katmai
Дата анонса первой модели: 26 февраля 1999 года
Тактовые частоты (МГц): 450, 500, 533, 550, 600
Частота системной шины (FSB) (МГц): 100, 133
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 512, работающий на ½ частоте ядра
Напряжение питания: 2,0 В (процессор на 600МГц — 2,05 В)
Количество транзисторов (млн.): 9,5
Максимальное тепловыделение (Вт): 34,5
Техпроцесс (нм): 250
Разъём: Slot 1
Корпус: 570-контактный OLGA помещенный на печатную плату и упакованный в 242-контактный картридж типа SECC2
Coppermine для Slot 1
Дата анонса первой модели: 25 октября 1999 года
Тактовые частоты (МГц): 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 933, 1000, 1133
Частота системной шины (FSB) (МГц): 100, 133
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 256, работающий на частоте ядра
Напряжение питания (В): 1,65; 1,7
Количество транзисторов (млн.): 28
Максимальное тепловыделение (Вт): 26,1
Техпроцесс (нм): 180
Разъём: Slot 1
Корпус: 495-контактный OLGA помещенный на печатную плату и упакованный в 242-контактный картридж типа SECC2
Слайд 31Coppermine для Socket 370
Дата анонса первой модели: 25 октября 1999 года
Тактовые частоты
Coppermine для Socket 370
Дата анонса первой модели: 25 октября 1999 года
Тактовые частоты
Частота системной шины (FSB) (МГц): 100, 133
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 256, работающий на частоте ядра
Напряжение питания (В): 1,6; 1,65; 1,7; 1,75;
Количество транзисторов (млн.): 28
Максимальное тепловыделение (Вт): 37,5
Техпроцесс (нм): 180
Разъём: Socket 370
Корпус: 370-контактный FCPGA
Tualatin
Дата анонса первой модели: 21 июня 2001 года
Тактовые частоты (МГц):
Серверные версии: 700, 800, 1133, 1266, 1400
Настольные версии(desktop): 1000, 1133, 1200, 1333, 1400
Частота системной шины (FSB) (МГц): 100, 133
Размер кэша L1 (Кбайт): 16 (для данных)+16 (для инструкций)
Размер кэша L2(Кбайт): 512, 256
Напряжение питания (В): 1,45; 1,5; 1,75
Количество транзисторов (млн.): 44
Максимальное тепловыделение (Вт): 32,2
Техпроцесс (нм): 130
Разъём: Socket 370
Корпус: 370-контактный FCPGA2