Презентации, доклады, проекты без категории

Презентация на тему ВЛИЯНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ НА ОРГАНИЗМ ЧЕЛОВЕКА. ФИЗИОТЕРАПИЯ
Презентация на тему ВЛИЯНИЕ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ НА ОРГАНИЗМ ЧЕЛОВЕКА. ФИЗИОТЕРАПИЯ
За последнее время возник и быстро сформировался новый фак-тор окружающей среды - электромагнитное поле (ЭМП) антропогенного (искусственного) происхождения. К его источникам относятся все типы радиотехнических объектов, аппараты сотовой связи, телевизоры, радиоприёмники, компьютеры, микроволновые печи, а также промышленное, медицинское, торговое оборудование и др. Характеризуя электромагнитную обстановку используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". ВВЕДЕНИЕ Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между электрическими заряженными частицами. Физические причины существования ЭМП связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н – вихревое электрическое поле Е: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника КРАТКАЯ ХАРАКТЕРИСТИКА ЭМП
Продолжить чтение
Презентация на тему Вес тела и сила тяжести
Презентация на тему Вес тела и сила тяжести
Наша ошибка В жизни мы очень часто говорим: «вес 5 килограмм», «весит 200 грамм» и так далее. И при этом не знаем, что допускаем ошибку, говоря так. Понятие веса тела изучают все в курсе физики в седьмом классе, однако ошибочное использование некоторых определений смешалось у нас настолько, что мы забываем изученное и считаем, что вес тела и масса это одно и то же. Однако это не так. Более того, масса тела величина неизменная, а вот вес тела может меняться, уменьшаясь вплоть до нуля. Так в чем же ошибка и как говорить правильно? Попытаемся разобраться. Вес тела и масса тела: формула подсчета Масса это мера инертности тела, это то, каким образом тело реагирует на приложенное к нему воздействие, либо же само воздействует на другие тела. А вес тела это сила, с которой тело действует на горизонтальную опору или вертикальный подвес под влиянием притяжения Земли. Масса измеряется в килограммах, а вес тела, как и любая другая сила в ньютонах. Вес тела имеет направление, как и любая сила, и является величиной векторной. А масса не имеет никакого направления и является величиной скалярной. Стрелочка, которой обозначается вес тела на рисунках и графиках, всегда направлена вниз, так же, как и сила тяжести. Формула веса тела в физике записывается следующим образом: P=mg где m - масса тела g - ускорение свободного падения = 9,81 м/с^2 Но, несмотря на совпадение с формулой и направлением силы тяжести, есть серьезное различие между силой тяжести и весом тела. Сила тяжести приложена к телу, то есть, грубо говоря, это она давит на тело, а вес тела приложен к опоре или подвесу, то есть, здесь уже тело давит на подвес или опору. Но природа существования силы тяжести и веса тела одинакова притяжение Земли. Собственно говоря, вес тела является следствием приложенной к телу силы тяжести. И, так же как и сила тяжести, вес тела уменьшается с увеличением высоты.
Продолжить чтение
Презентация на тему Уравнение состояния идеального газа
Презентация на тему Уравнение состояния идеального газа
Как уже указывалось, состояние некоторой массы газа определяется тремя термодинамическими параметрами: давлением р, объемом V и температурой T. Между этими параметрами существует определенная связь, называемая уравнением состояния, кото­рое в общем виде дается выражением f (р, V, Т) = 0, где каждая из переменных является функцией двух других. Французский физик и инженер Б. Клапейрон (1799-1864) вывел уравнение состоя­ния идеального газа, объединив законы Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление р1 и находится при тем­пературе Т1). Эта же масса газа в другом произвольном состоянии характеризуется параметрами р2,V2, Т2 (рис. 4). Переход из состояния 1в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1 — 1'), 2) изохорного (изохора 1'-2). В соответствии с законами Бойля— Мариотта (1) и Гей-Люссака (5) запишем: р1V1 = p1'V2 (6)   Рисунок 4 (7)   Исключив из уравнений (6) в (7) p1', получим (8) Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина р V/Т остается постоянной, т. е. Выражение (8) является уравнением Клапейрона, в котором В - газовая постоянная, различная для разных газов. Русский ученый Д. И. Менделеев (1834-1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем Vт. Согласно закону Авогадро, при одинаковых р и T моли всех газов занимают одинаковый молярный объем Vт, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению (9) удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Клапейрона - Менделеева.
Продолжить чтение
Презентация на тему Ультразвук упругие колебания и волны с частотами
Презентация на тему Ультразвук упругие колебания и волны с частотами
  Физические свойства и особенности распространения ультразвука. По своей физической природе У. представляет собой упругие волныФизические свойства и особенности распространения ультразвука. По своей физической природе У. представляет собой упругие волны и в этом он не отличается от звука. Частотная граница между звуковыми и ультразвуковыми волнами поэтому условна; она определяется субъективными свойствами человеческого слуха и соответствует усреднённой верхней границе слышимого звука. Однако благодаря более высоким частотам и, следовательно, малым длинам волн имеет место ряд особенностей распространения У. Так, для УЗВЧ длины волн в воздухе составляют 3,4×10-3—3,4×10-5 см, в воде 1,5×10-2—1,5 ×10-4 см и в стали 5×10-2— 5×10-4 см. У. в газах и, в частности, в воздухе распространяется с большим затуханием (см. Поглощение звука).
Продолжить чтение
Презентация на тему Типы и поляризация диэлектриков. Проводники в электростатическом поле
Презентация на тему Типы и поляризация диэлектриков. Проводники в электростатическом поле
10.8. Типы диэлектриков. Поляризация диэлектриков. В зависимости от вида молекул диэлектрики делятся на три группы. Первую группу диэлектриков составляют вещества, молекулы которых симметричны (Н2, О2, СО2). Центры положитель­ных и отрицательных зарядов в отсутствие внешнего электрического поля совпадают и дипольный момент молекулы р равен нулю. Молекулы таких диэлект­риков называются неполярными. Диэлектриком называется вещество, не проводящее электрический ток. Основное свойство диэлектрика – способность поляризоваться во внешнем электрическом поле. Вторую группу диэлектриков составляют вещества, молеку­лы которых имеют асимметричное строение (H2O, CO,...). Центры «тяжести» положительных и отрицательных зарядов не совпадают. Молекулы таких диэлектриков в отсутствие внешнего электрического поля обладают дипольным моментом. Они называются полярными. При отсутствии внешнего поля суммарный дипольный момент равен нулю. Под действием внешнего поля молекулы ориентируются одинаково, и в результате возникает результирующий момент.
Продолжить чтение
Презентация на тему Тепловое действие тока
Презентация на тему Тепловое действие тока
Электрический ток. Электрический ток нагревает проводник. Объясняется оно тем, что свободные электроны в металлах, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока увеличивается скорость колебаний ионов и атомов и внутренняя энергия проводника увеличивается. Опыты показывают, что в неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии. Нагретый проводник отдает полученную энергию окружающим телам, но уже путем теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока. Мы знаем, что работу тока рассчитывают по формуле: А = U·I·t. Электрический ток в проводнике Закон Ома. Обозначим количество теплоты буквой Q. Согласно сказанному выше Q = A, или Q = U·I·t. Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока, сопротивление участка цепи и время. Зная, что U = IR, получим: Q = I·R·I·t, т. е. Q=I ·R·t Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени. К этому же выводу, но на основании опытов впервые пришли независимо друг от друга английский ученый Джоуль и русский ученый Ленц. Поэтому сформулированный выше вывод называется законом Джоуля - Ленца. Закон Ома для участка цепи
Продолжить чтение
Презентация на тему Свет и цвет в природе
Презентация на тему Свет и цвет в природе
СВЕТ И ЦВЕТ В ПРИРОДЕ Тут, если солнце блеснет во мгле непогоды лучами Прямо против дождя, из тучи кропящего капли, Радуги яркой цвета появляются в облаке черном. Лукреций Что такое свет? Этот вопрос издавна волновал человечество. Древние греки выдвигали несколько гипотез о природе света. Согласно одной из них, свет представляет собой нечто такое, что истекает из глаз, подобно воде из шланга. Лучи света как бы «ощупывают» предметы, доставляя наблюдателю информацию об их форме и цвете. Пифагор высказывал идею, что тела становятся видимыми благодаря испускаемым ими частицам. И.Ньютон в 1672 году предложил корпускулярную теорию, согласно которой свет представляет собой поток частиц. Голландский ученый Х.Гюйгенс в 1678 году разработал волновую теорию, которая рассматривает свет как упругую волну, распространяющуюся в среде. На протяжении ста лет корпускулярная теория имела гораздо больше приверженцев, чем волновая. Однако в начале 19 века французскому физику О.Френелю удалось на основе волновых представлений объяснить все известные в то время оптические явления. В результате волновая теория получила общее признание, а корпускулярная теория была забыта. В1864 году Д.Максвел создал электромагнитную теорию света, согласно которой свет есть электромагнитные волны с диапазоном длин от 0,4 до 0,75 мкм. Согласно представлениям современной физики, свет обладает одновременно свойствами электромагнитных волн и свойствами частиц. Двойственность свойств света называется корпускулярно-волновым дуализмом. Объясняет волновые и квантовые свойства света квантовая механика, основы которой были созданы М.Планком в начале 20 века.   Представление о природе света Поток частиц Упругие волны Электромагнитные волны Поток фотонов Развитие представлений о природе света  
Продолжить чтение
Презентация на тему Теплопроводность, диффузия, внутреннее трение (вязкость). Основы термодинамики. Первое начало термодинамики
Презентация на тему Теплопроводность, диффузия, внутреннее трение (вязкость). Основы термодинамики. Первое начало термодинамики
1.Теплопроводность. Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е., иными словами, выравнивание температур. Перенос энергии в форме теплоты подчиняется закону Фурье: где jE - плотность теплового потока — величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х,λ — теплопроводность, dT/dx градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки jE и dT/dx -- противоположны). Теплопроводность λ численно равна плотности теплового потока при градиенте температуры, равном единице. Можно показать, что λ=1/3cV ρ (2) где cV - удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), ρ - плотность газа, < υ > - средняя скорость теплового движения молекул, - средняя длина свободного пробега (1 ) 2. Диффузия. Явление диффузии заключается в том, что происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия сводится к обмену масс частиц этих тел возникает и продолжается, пока существует градиент плотности. Во время становления молекулярно-кинетической теории по вопросу диффузии возникли противоречия. Так как молекулы движутся с огромными скоростями, диффузия должна происходить очень быстро. Если же открыть в комнате сосуд с пахучим веществом, то запах распространяется довольно медленно. Однако противоречия здесь нет. Молекулы при атмосферном давлении обладают малой длиной свободного пробега и, сталкиваясь с другими молекулами, в основном «стоят» на месте. Явление диффузии для химически однородного газа подчиняется закону Фика: (3) где jm - плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D - диффузия (коэффициент диффузии), dр/dх - градиент плотности, равный скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус показывает, что перенос массы происходит в направлении убывания плотности (поэтому знаки jm и dр/dх противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов, D=1/3 (4)
Продолжить чтение
Презентация на тему Свободные и вынужденные колебания. Электромагнитные колебания. Резонанс и автоколебания
Презентация на тему Свободные и вынужденные колебания. Электромагнитные колебания. Резонанс и автоколебания
5.5. Свободные колебания Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при отсутствии внешних воздействий. При наличии сил трения или сопротивления среды свободные механические колебания становятся затухающими. Затухание колебаний объясняется возникновением силы трения (сопротивления). Величина силы трения пропорциональна скорости движения тела: kтр – коэффициент трения. Согласно закону Ньютона сумма сил, которая заставляет колебаться тело, определяется произведением массы тела на ускорение: На основании записанного равенства можно записать уравнение динамики свободных колебаний тела: Дифференциальное уравнение свободно колеблющегося тела, которое называют уравнением осциллятора:
Продолжить чтение