Презентации, доклады, проекты без категории

Презентация на тему Применение первого начала термодинамики к изопроцессам
Презентация на тему Применение первого начала термодинамики к изопроцессам
Изохорный процесс Диаграмма этого процесса (изохора) в координатах изображается прямой, параллельной оси ординат (см. рис.), где процесс 2-1 есть изохорное нагревание, а 2-3 - изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т.е. Из первого начала термодинамики для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии: Согласно формуле (53.4) Тогда для произвольной массы газа получим (54.1) Изобарный процесс Диаграмма этого процесса (изобара) в координатах изображается прямой, параллельной оси При изобарном процессе работа газа при увеличении объема от до равна (54.2) и определяется площадью заштрихованного прямоу-гольника (см. рис.). Если использовать уравнение Клапейрона-Менделеева для выбранных двух состояний, то и , откуда
Продолжить чтение
Презентация на тему Первый закон термодинамики
Презентация на тему Первый закон термодинамики
Первый закон термодинамики 1. Закон сохранения энергии а) формулировка закона сохранения б) историческая справка 2. Первый закон термодинамики 3. «Вечные двигатели» I. О сохранении и превращении энергии а. формулировка Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую. б. краткая историческая справка Открытие закона сохранения и превращения энергии, одно из величайших, по мнению Ф. Энгельса, достижений науки 19 века, явилось естественным следствием развития всех областей физики. Важную роль в истории этого открытия сыграли и запросы практики: в условиях все расширяющегося машинного производства особенно остро встал вопрос об эффективности различных машин и механизмов. Закономерность установления закона сохранения энергии подтверждается тем, что три исследователя: Майер, Джоуль, Гельмгольц - почти одновременно пришли к сходным выводам. Хронологически первыми были публикации немецкого врача и естествоиспытателя Р. Майера.
Продолжить чтение
Презентация на тему Основы термодинамики
Презентация на тему Основы термодинамики
Основы термодинамики Раздел физики, название которого происходит от греческих слов "терме" - "теплота" и "динамис" - "сила". Изучает он превращение теплоты, работы и других видов энергии, сопровождающих физико-химические процессы. Термодинамика как самостоятельная дисциплина сформировалась в конце XIX в. В основе классической термодинамики лежат несколько положений, выведенных из опыта. Они сформулированы в виде начал термодинамики, а из них математическим и логическим путем выводятся частные закономерности, позволяющие предсказать вероятное (термодинамические) свойства веществ. Основная цель науки, и в том числе, конечно, физики, состоит в поисках правил, закономерностей, общих законов, которым подчиняется природа. Законы термодинамики относятся к числу наиболее общих законов природы. Таких законов немного. Их можно пересчитать по пальцам одной руки. Научный поиск начинается с наблюдения или эксперимента. Поэтому мы говорим, что все наши знания носят эмпирический (опытный) характер. За наблюдениями следует поиск обобщений. Путем настойчивого труда, размышлений, вычислений и озарения находятся общиезаконы природы. После этого следует третий этап: строгий логический вывод из этих общих законов следствий и частных законов, которые могут быть проверены на опыте. Разумеется, мечтой науки является сведение законов к минимальному числу постулатов. Физики неустанно ищут такие возможности, стараются в нескольких строках элегантными формулами выразить всю сумму наших знаний о природе.
Продолжить чтение
Презентация на тему Курс лекций по общей физике
Презентация на тему Курс лекций по общей физике
Предмет физики. Методы физического познания: наблюдение, опыт, эксперимент, гипотеза, теория. Физика как культура моделирования. Математика и физика. Компьютеры в современной физике. Роль физики в развитии техники и влияние техники на развитие физики. Общая структура и задачи курса физики в техническом вузе. Физика - наука, изучающая простейшие и вместе с тем наиболее общие закономерности природных явлений, свойства и строение материи, законы её движения. Понятия, которыми оперирует физика, и законы физики лежат в основе всего естествознания. Слово «физика» происходит от греческого physis - природа. Границы, отделяющие физику от других естественных наук условны и с течением времени изменяются. Законы физики базируются на фактах, установленных опытным путём. Однако, физика является точной наукой и её законы устанавливают количественные соотношения и формулируются на математическом языке. Различают экспериментальную и теоретическую физику. Цель экспериментальной физики - обнаружение и исследование явлений природы, проверка известных и открытие новых физических законов. Цель теоретической физики - формулировка и математическое описание законов природы, объяснение конкретных явлений на основе этих законов, выдвижение гипотез, предсказание новых явлений, создание новых физических теорий. Физическая теория даёт объяснение целой области явлений природы с единой точки зрения. Опыт и теория в равной мере необходимы и взаимосвязаны. В настоящее время важнейшую роль в развитии науки, и физики в частности, играют компьютерные и информационные технологии - компьютерное моделирование физических явлений, программированный контроль и управление экспериментом, запись и визуализация информации, накопление и систематизация научной фактов, необозримые возможности вычислительной техники, коммуникации мировых научных школ в Интернете и многое другое.
Продолжить чтение
Презентация на тему Курс лекций по общей физике Введение
Презентация на тему Курс лекций по общей физике Введение
Предмет физики. Методы физического познания: наблюдение, опыт, эксперимент, гипотеза, теория. Физика как культура моделирования. Математика и физика. Компьютеры в современной физике. Роль физики в развитии техники и влияние техники на развитие физики. Общая структура и задачи курса физики в техническом вузе. Физика - наука, изучающая простейшие и вместе с тем наиболее общие закономерности природных явлений, свойства и строение материи, законы её движения. Понятия, которыми оперирует физика, и законы физики лежат в основе всего естествознания. Слово «физика» происходит от греческого physis - природа. Границы, отделяющие физику от других естественных наук условны и с течением времени изменяются. Законы физики базируются на фактах, установленных опытным путём. Однако, физика является точной наукой и её законы устанавливают количественные соотношения и формулируются на математическом языке. Различают экспериментальную и теоретическую физику. Цель экспериментальной физики - обнаружение и исследование явлений природы, проверка известных и открытие новых физических законов. Цель теоретической физики - формулировка и математическое описание законов природы, объяснение конкретных явлений на основе этих законов, выдвижение гипотез, предсказание новых явлений, создание новых физических теорий. Физическая теория даёт объяснение целой области явлений природы с единой точки зрения. Опыт и теория в равной мере необходимы и взаимосвязаны. В настоящее время важнейшую роль в развитии науки, и физики в частности, играют компьютерные и информационные технологии - компьютерное моделирование физических явлений, программированный контроль и управление экспериментом, запись и визуализация информации, накопление и систематизация научной фактов, необозримые возможности вычислительной техники, коммуникации мировых научных школ в Интернете и многое другое.
Продолжить чтение
Презентация на тему Молекулярная физики и основы термодинамики
Презентация на тему Молекулярная физики и основы термодинамики
Основы термодинамики Раздел физики, название которого происходит от греческих слов "терме" - "теплота" и "динамис" - "сила". Изучает он превращение теплоты, работы и других видов энергии, сопровождающих физико-химические процессы. Термодинамика как самостоятельная дисциплина сформировалась в конце XIX в. В основе классической термодинамики лежат несколько положений, выведенных из опыта. Они сформулированы в виде начал термодинамики, а из них математическим и логическим путем выводятся частные закономерности, позволяющие предсказать вероятное (термодинамические) свойства веществ. Основная цель науки, и в том числе, конечно, физики, состоит в поисках правил, закономерностей, общих законов, которым подчиняется природа. Законы термодинамики относятся к числу наиболее общих законов природы. Таких законов немного. Их можно пересчитать по пальцам одной руки. Научный поиск начинается с наблюдения или эксперимента. Поэтому мы говорим, что все наши знания носят эмпирический (опытный) характер. За наблюдениями следует поиск обобщений. Путем настойчивого труда, размышлений, вычислений и озарения находятся общиезаконы природы. После этого следует третий этап: строгий логический вывод из этих общих законов следствий и частных законов, которые могут быть проверены на опыте. Разумеется, мечтой науки является сведение законов к минимальному числу постулатов. Физики неустанно ищут такие возможности, стараются в нескольких строках элегантными формулами выразить всю сумму наших знаний о природе.
Продолжить чтение
Презентация на тему Основное уравнение молекулярно-кинетической теории идеальных газов.Закон Максвелла о распределении молекул
Презентация на тему Основное уравнение молекулярно-кинетической теории идеальных газов.Закон Максвелла о распределении молекул
Для вывода основного уравнения молекулярно-кинетической теории рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку ΔS (рис. 1) и вычислим давление, оказываемое на эту площадку. При каждом соударении молеку­ла, движущаяся перпендикулярно площадке, передает ей импульс m0υ- (- m0υ)=2 m0υ, где m0 - масса молекулы, υ- ее скорость. За время Δt площадки ΔS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием ΔS и высотой υΔt (рис. 1). Число этих молекул равно nΔSυΔt (n — концентрация молекул). Необходимо, однако, учитывать, что реально молекулы движутся к площадке ΔS под разными углами и имеют различные скорости, причем скорость молекул при каждом соударении меняется. Рисунок 1 Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент времени вдоль каждого из них движется 1/3 молекул, причем половина молекул 1/6 движется вдоль данного направления в одну сторону, половина – в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку ΔS будет 1/6 nΔSυΔt. При столкновении с площадкой эти молекулы передадут ей импульс ΔР=2mυ0·1/6 nΔSυΔt= 1/3 nт0υ2 ΔSΔt. Тогда давление газа, оказываемое им на стенку сосуда, p= ΔР /(ΔtΔS)=1/3 nт0υ2 (1) Если газ в объеме V содержит N молекул, движущихся со скоростями υ1 ,υ2, …, υN, то целесообразно рассматривать среднюю квадратичную скорость (2) характеризующую всю совокупность молекул газа. Уравнение (1) с учетом (2) примет вид p = 1/3 nт0< υ кв>2 (3) Выражение (3) называется основным уравнением молекулярно-кннетнческой теории идеальных газов. Точный расчет с учетом движения молекул по всевозможным направлениям дает ту же формулу. Учитывая, что п=N/V, получим  pV=1/3Nm0< υ кв>2, (4) (5)  где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.
Продолжить чтение