Механизмы проведения возбуждения

Содержание

Слайд 2

Законы проведения возбуждения по нервам.
1. Закон физиологической непрерывности. Перерезка, перевязка,

Законы проведения возбуждения по нервам. 1. Закон физиологической непрерывности. Перерезка, перевязка, а
а также любое другое воздействие, нарушающее целость мембраны (физиологическую, а не только анатомическую), создают непроводимость. То же возникает при тепловых и химических воздействиях.
2. Закон двустороннего проведения. При нанесении раздражения на нервное волокно возбуждение распространяется по нему в обеих направлениях ( по поверхности мембраны - во все стороны) с одинаковой скоростью. Это доказывается опытом Бабухина и подобными ему.
3. Закон изолированного проведения. В нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходят с одного волокна на другое. Это очень важно, так как обеспечивает точную адресовку импульса. Связано это с тем, что электрическое сопротивление миелиновых и швановской оболочек, а также межклеточной жидкости значительно больше, чем со-противление мембраны нервных волокон.

Слайд 3

Классификация нервных волокон. Как только в какой-либо точке нервного или мышечного

Классификация нервных волокон. Как только в какой-либо точке нервного или мышечного волокна
волокна возникает ПД и этот участок приобретает отрицательный заряд, между возбужденными и соседними покоящимися участками волокна возникает электрический ток. В данном случае возбужденный участок мембраны действует на соседние участки как катод постоянного тока, вызывая их деполяризацию и генерируя локальный ответ. Если величина локального ответа превысит Ек мембраны, возникает ПД. В результате наружная поверхность мембраны заряжается отрицательно на новом участке. Таким способом волна возбуждения распространяется вдоль всего волокна со скоростью около 0,5-3 м/сек.
Скорость распространения волны возбуждения – нервного импульса – неодинакова у разных нейронов. Для нервных волокон она определяется главным образом диаметром волокна – чем больше диаметр волокна, тем скорость проведения выше.
Кроме того, скорость проведения возбуждения зависит от того, принадлежит ли нервное волокно к мякотным (миелинизированным) или является безмякотным (немиелинизированным) волокном. Оболочка жироподобного вещества миелина служит хорошим изолятором, поэтому распространение волны возбуждения имеет разную скорость в этих типах волокон.
Оболочка миелина в продольном направлении примерно через 1 мм имеет разрывы, называемые перехватами Ранвье. Вследствие электроизолирующих свойств миелина, в тех участках волокна, где он имеется, катионы Na+ в нервное волокно не поступают. Следовательно, возбуждение вдоль миелинизированного участка распространяется особым электротоническим образом – почти без задержки, скачком. Такой способ получил название сальтаторного. Задержка происходит только в области перехвата Ранвье, где электротонический потенциал вначале должен достичь пороговой величины и только затем может вызвать перезарядку мембраны, т.е. вызвать возбуждение.

Слайд 4

 

Скорость проведения возбуждения в нервных волокнах разного диаметра

Скорость проведения возбуждения в нервных волокнах разного диаметра

Слайд 5

Мембрана в области перехвата специализирована для генерации возбуждения: количество Na+-каналов на единицу

Мембрана в области перехвата специализирована для генерации возбуждения: количество Na+-каналов на единицу
площади здесь примерно в 100 раз выше, чем в безмякотном волокне.
Обычно все волокна со скоростью проведения больше 3 м/с являются миелинизированными, скорость распространения нервного импульса в таких волокнах позвоночных достигает 100 м/с, тогда как в немиелинизированных она не превышает 3 м/с.
Механизмы и скорость проведения возбуждения в безмякотных и мякотных нервных волокнах различны. В безмякотных возбуждение распространяется непрерывно вдоль всей мембраны от одного возбужденного участка к другому, расположенному рядом, так, как мы уже обсуждали.
В миэлиновых волокнах возбуждение распространяется только скачкообразно, перепрыгивая через участки, покрытые миелиновой оболочкой (сальтаторно). Потенциалы действия в этих волокнах возникают только в перехватах Ранвье. В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов Ранвье заряжена положительно. В момент возбуждения поверхность первого перехвата становится отрицательно заряженной по отношению к соседнему второму перехвату. Это приводит к возникновению местного (локального) электротока, который идет через окружающую волокно меж-клеточную жидкость, мембрану и аксоплазму от перехвата 2 к 1. Выходящий через перехват 2 ток возбуждает его, вызывая перезарядку мембраны. Теперь этот участок может возбудить следующий и т.д.
Перепрыгивание ПД через межперехватный участок возможно потому, что амплитуда ПД в 5-6 раз больше порога, необходимого для возбуждения не только следующего, но и 3-5 перехватов. Поэтому микроповреждения волокна в межперехватных участках или не одном перехвате не прекращают работы нервного волокна до тех пор, пока регенеративный явления не захватят 3 и более лежащих рядом швановские клетки.
Время, необходимое для передачи возбуждения от одного перехвата к другому, одинаково у волокон различного диаметра, и составляют 0,07 мсек. Однако поскольку длина межперехватных участков различна и пропорциональна диаметру волокна, в миэлинизированных нервах скорость проведения нервных импульсов прямо пропорциональная их диаметру.

Слайд 6

Классификация нервных волокон. Электрический ответ целого нерва является алгебраической суммой ПД отдельных

Классификация нервных волокон. Электрический ответ целого нерва является алгебраической суммой ПД отдельных
его нервных волокон. Поэтому, с одной стороны, амплитуда электрических импульсов целого нерва зависит от силы раздражителя (с ее ростом вовлекаются все новые волокна), а во-вторых, суммарный потенциал действия нерва может быть расчленен на не-сколько отдельных колебаний, причиной чего является неодинаковая скорость проведения импульсов по разным волокнам, составляющим целый нерв.
В настоящее время нервные волокна по скорости проведения возбуждения, длительности различных фаз ПД и строении принято разделять на три основных типа.
Волокна типа А делятся на подгруппы (альфа, бета, гамма, дельта). Они покрыты миелиновой оболочкой. Скорость проведения у них самая большая - 70-120 м/сек. Это - двигательные волокна, от моторных нейронов спинного мозга. Остальные волокна типа А - чувствительные.
Волокна типа В - миелиновые, преимущественно преганглионарные. Скорость проведения - 3-18 м/сек.
Волокна типа С - безмякотные, очень малого диаметра (2 мк). Скорость проведения не больше 3 м/сек. Это постганглионарные волокна симпатической нервной системы чаще всего.

Слайд 7

3.2. НЕРВНО-МЫШЕЧНЫЙ СИНАПС: СТРОЕНИЕ, МЕХАНИЗМ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ, ОСОБЕННОСТИ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В СИНАПСЕ

3.2. НЕРВНО-МЫШЕЧНЫЙ СИНАПС: СТРОЕНИЕ, МЕХАНИЗМ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ, ОСОБЕННОСТИ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В СИНАПСЕ
ПО СРАВНЕНИЮ С НЕРВНЫМ ВОЛОКНОМ. Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).

Рис. 5. Схема строения синапса

Пресинаптическая часть химического синапса образуется расширением аксона по его ходу или окончания. В пресинаптической части имеются пузырьки. Пузырьки (кванты) содержат медиатор. В пресинаптическом расширении находятся митохондрии, обеспечивающие синтез медиатора, гранулы гликогена и др. При многократном раздражении пресинаптического окончания запасы медиатора в синаптических пузырьках истощаются. Пузырьки содержат ацетилхолин, который является медиатором в нерно-мышечных синапсах (рис. 5).

Слайд 8

Роль медиатора заключается в повышении проницаемости постсинаптической мембраны для ионов Na+. Возникновение

Роль медиатора заключается в повышении проницаемости постсинаптической мембраны для ионов Na+. Возникновение
потока ионов Na+ из синаптической щели через постсинаптическую мембрану ведет к ее деполяризации и вызывает генерацию возбуждающего постсинаптического потенциала (ВПСП).
Для распространения возбуждения через химический синапс важно, что нервный импульс, идущий по пресинаптической части, полностью гасится в синаптической щели. Однако этот импульс вызывает физиологические изменения в пресинаптической части мембраны. В результате у ее поверхности скапливаются синаптические пузырьки, изливающие медиатор в синаптическую щель.
Переход медиатора в синаптическую щель осуществляется путем экзоцитоза: пузырек с медиатором соприкасается и сливается с пресинаптической мембраной, затем открывается выход в синаптическую щель и в нее попадает медиатор. В покое медиатор попадает в синаптическую щель постоянно, но в малом количестве. Под влиянием пришедшего возбуждения количество медиатора резко возрастает.
Нервно-мышечные синапсы обеспечивают проведение возбуждения с нервного волокна на мышечное благодаря медиатору ацетилхолину, который при возбуждении нервного окончания переходит в синаптическую щель и действует на концевую пластинку мышечного волокна. В пресинаптической терминали образуется и скапливается в виде пузырьков ацетилхолин. При возбуждении электрическим импульсом, идущим по аксону, пресинаптической ча-сти синапса ее мембрана становится проницаемой для ацетилхолина.

Слайд 9

Эта проницаемость возможна благодаря тому, что в результате деполяризации пресинаптической мембраны открываются

Эта проницаемость возможна благодаря тому, что в результате деполяризации пресинаптической мембраны открываются
ее кальциевые каналы. Ион Са2+ входит в пресинаптическую часть синапса из синаптической щели. Ацетилхолин высвобождается и проникает в синаптическую щель. Здесь он взаимодействует со своими рецепторами постсинаптической мембраны, принадлежащей мышечному волокну. Рецепторы, возбуждаясь, открывают белковый канал, встроенный в липидный слой мембраны. Через открытый канал внутрь мышечной клетки проникают ионы Na+, что приводит к деполяризации мембраны мышечной клетки, в результате развивается так называемый потенциал концевой пластинки (ПКП). Он вызывает генерацию потенциала действия мышечного волокна.
Нервно-мышечный синапс передает возбуждение в одном направлении: от нервного окончания к постсинаптической мембране мышечного волокна, что обусловлено наличием химического звена в механизме нервно-мышечной передачи.
Скорость проведения возбуждения через синапс намного меньше, чем по нервному волокну, так как здесь тратится время на активацию пресинаптической мембраны, переход через нее кальция, выделение ацетилхолина в синаптическую щель, деполяризацию постсинаптической мембраны, развитие ПКП.

Слайд 10

Синаптическая передача возбуждения по сравнению с распространением потенциала действия имеет рад свойств:
1)

Синаптическая передача возбуждения по сравнению с распространением потенциала действия имеет рад свойств:
наличие медиатора в пресинаптической части синапса;
2) относительная медиаторная специфичность синапса, т. е. каждый синапс имеет свой доминирующий медиатор;
3) возможность действия специфических блокирующих агентов на рецептирующие структуры постсинаптической мембраны;
4) зависимость длительности активной фазы действия медиатора в синапсе от свойств медиатора;
5) односторонность проведения возбуждения;
6) наличие хемочувствительных рецепторуправляемых каналов пост-синаптической мембраны;
7) увеличение выделения квантов медиатора в синаптическую щель пропорционально частоте приходящих по аксону импульсов;
8) зависимость увеличения эффективности синаптической пере-дачи от частоты использования синапса («эффект тренировки»;
9) утомляемость синапса, развивающаяся в результате длительного высокочастотного его стимулирования. В этом случае утомление может быть обусловлено истощением и несвоевременным синтезом медиатора в пресинаптической части синапса.
Синаптические медиаторы являются веществами, которые имеют спе-цифические инактиваторы. Например, ацетилхолин инактивируется ацетилхолинэстеразой. Неиспользованный медиатор и его фрагменты всасываются обратно в пресинаптическую часть синапса.
Имя файла: Механизмы-проведения-возбуждения.pptx
Количество просмотров: 68
Количество скачиваний: 0