Содержание
- 3. Равномерные коды Равномерные коды – все кодовые слова (коды отдельных букв) имеют одинаковую длину. МАМА МЫЛА
- 4. Закодируйте свое имя с помощью кодовой таблицы (Windows-1251):
- 5. Неравномерные коды Неравномерные коды – кодовые слова имеют разную длину. 0100010011011011100001110000011010 М А М А М
- 6. Закодируйте свое имя с помощью азбуки Морзе. ВАСЯ
- 7. Двоичное кодирование - можно закодировать (почти) все виды информации; - нужны только устройства с двумя состояниями;
- 8. Декодирование – это восстановление сообщения из последовательности кодов. МАМА МЫЛА ЛАМУ → 00 1 00 1
- 9. Помехоустойчивое кодирование - кодирование, предназначенное для передачи данных по каналам с помехами, обеспечивающее исправление возможных ошибок
- 10. Лабораторная работа №5 ПОМЕХОУСТОЙЧИВЫЙ КОД ХЭММИНГА Цель работы: изучение принципов помехоустойчивого кодирования, получение навыков моделирования помехоустойчивых
- 11. ЗАДАНИЕ 1. Формирование бита чётности Простейший код, предназначенный для обнаружения одной ошибки (точнее – для обнаружения
- 12. Проверочный бит k для n-битного двоичного слова b1b2...bn вычисляется по формуле:
- 13. Пример. Пусть дан байт 10111100. тогда k=1 и кодовая комбинация равна 101111001
- 14. Сформировать бит чётности (бит паритета) для заданного байта передаваемых данных.
- 15. ЗАДАНИЕ 2. Исследование помехоустойчивого кода с формированием бита чётности Выполнить моделирование процесса передачи информации.
- 16. Схема исследований кода с формированием бита паритета
- 17. ЗАДАНИЕ 3. Исправление ошибки с помощью кода Хэмминга Расчётным путём (вручную) определить, в каком разряде принятого
- 18. Код Хемминга – это блочный код, позволяющий исправлять одиночные и фиксировать двойные ошибки, разработанный Ричардом Хеммингом
- 19. В это время он работал в лаборатории Bell Labs на электромеханической счетной машине Bell Model V.
- 20. Идея кода Хемминга заключается в разбиении данных на блоки фиксированной длины и вводе в эти блоки
- 21. Рассмотрим пример кодирования бинарной последовательности данных, состоящей из 8 элементов: 10101101. Определим необходимое количество контрольных разрядов.
- 22. 2. Определим расположение проверочных бит в результирующей закодированной последовательности. Обозначим информационные биты символом ИБ, а контрольные
- 23. 3. Определим, какие группы контролируют проверочные биты. ИБ3: 3 = 20 + 21 = 1 +
- 24. ИБ7: 7 = 20 + 21 + 22 = 1 + 2 + 4 => Информационный
- 25. 4. Рассчитаем значения контрольных бит. Для этого определим группы для всех контрольных бит, а результат запишем
- 26. Итоговая кодовая комбинация
- 27. Рассмотрим пример нахождения искажённого бита с помощью кода Хэмминга. Места расположения информационных битов (ИБ) и контрольных
- 28. Пример. Предположим, что в процессе передачи некоторых данных произошло искажение одного информационного бита и на приёме
- 29. Вычислим значения контрольных битов на приёме. Расчёт производится по формулам: KБ’1 = ИБ3 ⊕ ИБ5 ⊕
- 30. Контрольные биты, сформированные на передающей и приёмной сторонах, различаются: КБ1 = КБ’1 = 0 = 0,
- 31. Переведём синдром S=1010 из двоичной системы счисления в десятичную S=1*23+0*22+1*21+0*20=10. Десятичное число 10 говорит о том,
- 32. ЗАДАНИЕ 4. Моделирование работы кода Хэмминга На передающей стороне формируются контрольные биты. На приёмной стороне вычисляется
- 33. Пример схемы передающей стороны
- 34. Пример схемы канала связи
- 36. Пример схемы принимающей стороны
- 37. Семисегментный индикатор
- 39. Скачать презентацию