Математическое программирование

Содержание

Слайд 2

РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. ГЕОМЕТРИЧЕСКИЙ МЕТОД

Графоаналитический (графический) способ решения задач линейного программирования

РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ. ГЕОМЕТРИЧЕСКИЙ МЕТОД Графоаналитический (графический) способ решения задач линейного
обычно используется для решения задач с двумя переменными, когда ограничения выражены неравенствами, а также задач, которые могут быть сведены к таким задачам.

Слайд 3

ПОРЯДОК ГРАФИЧЕСКОГО РЕШЕНИЯ

С учетом системы ограничений строится область допустимых решений.
Строится

ПОРЯДОК ГРАФИЧЕСКОГО РЕШЕНИЯ С учетом системы ограничений строится область допустимых решений. Строится
вектор .
Проводится произвольная линия, перпендикулярная к вектору .
При решении задачи на максимум перемещается линия уровня в направлении вектора так, чтобы она касалась области допустимых решений в ее крайнем положении. В случае задачи на минимум линия уровня перемещается в антиградиентном направлении.
Определяется оптимальный план  и экстремальное значение целевой функции 

Слайд 4

ПРИМЕР

ПРИМЕР

Слайд 5

ПРИМЕР

ПРИМЕР

Слайд 6

ПРИМЕР

ПРИМЕР

Слайд 7

ПРИМЕР

ПРИМЕР

Слайд 8

ПРИМЕР

ПРИМЕР

Слайд 9

СИМПЛЕКС МЕТОД

Симплекс метод - это метод последовательного перехода от одного базисного решения (вершины

СИМПЛЕКС МЕТОД Симплекс метод - это метод последовательного перехода от одного базисного
многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Слайд 10

Алгоритм симплекс метода

Шаг 1. Привести задачу линейного программирования к канонической форме. Для

Алгоритм симплекс метода Шаг 1. Привести задачу линейного программирования к канонической форме.
этого перенести свободные члены в правые части (если среди этих свободных членов окажутся отрицательные, то соответствующее уравнение или неравенство умножить на - 1) и в каждое ограничение ввести дополнительные переменные (со знаком "плюс", если в исходном неравенстве знак "меньше или равно", и со знаком "минус", если "больше или равно").
Шаг 2. Если в полученной системе m уравнений, то m переменных принять за основные, выразить основные переменные через неосновные и найти соответствующее базисное решение. Если найденное базисное решение окажется допустимым, перейти к допустимому базисному решению.
Шаг 3. Выразить функцию цели через неосновные переменные допустимого базисного решения. Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с отрицательными (положительными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным - решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с отрицательными (положительными) коэффициентами, перейти к новому базисному решению.
Шаг 4. Из неосновных переменных, входящих в линейную форму с отрицательными (положительными) коэффициентами, выбирают ту, которой соответствует наибольший (по модулю) коэффициент, и переводят её в основные. Переход к шагу 2.

Слайд 11

ПРИМЕР

Система ограничений:

ПРИМЕР Система ограничений:

Слайд 12

ПРИМЕР

ПРИМЕР

Слайд 13

ПРИМЕР

ПРИМЕР

Слайд 14

ПРИМЕР

ПРИМЕР

Слайд 15

ПРИМЕР

ПРИМЕР

Слайд 16

ПРИМЕР

ПРИМЕР

Слайд 17

ТРАНСПОРТНАЯ ЗАДАЧА

Задача Монжа - Канторовича - математическая задача линейного программирования специального вида

ТРАНСПОРТНАЯ ЗАДАЧА Задача Монжа - Канторовича - математическая задача линейного программирования специального
о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение. Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления (например, складов) в пункты потребления (например, магазины), с минимальными общими затратами на перевозки.

Слайд 18

АЛГОРИТМ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ

Построение транспортной таблицы.
Проверка задачи на закрытость.
Составление опорного плана.
Проверка

АЛГОРИТМ РЕШЕНИЯ ТРАНСПОРТНОЙ ЗАДАЧИ Построение транспортной таблицы. Проверка задачи на закрытость. Составление
опорного плана на вырожденность.
Вычисление потенциалов для плана перевозки.
Проверка опорного плана на оптимальность.
Перераспределение поставок.
Если оптимальноерешение найдено, переходим к п. 9, если нет – к п. 5.
Вычисление общих затрат на перевозку груза.
Построение графа перевозок.

Слайд 19

ПРИМЕР

ПРИМЕР

Слайд 20

ПРИМЕР

ПРИМЕР

Слайд 21

ПРИМЕР

ПРИМЕР

Слайд 22

ПРИМЕР

ПРИМЕР

Слайд 23

ПРИМЕР

ПРИМЕР

Слайд 24

ПРИМЕР

ПРИМЕР

Слайд 25

ПРИМЕР

ПРИМЕР

Слайд 26

ПРИМЕР

ПРИМЕР

Слайд 27

ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

Динамическое программирование – подход, позволяющий решать задачи оптимизации, которые могут быть

ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ Динамическое программирование – подход, позволяющий решать задачи оптимизации, которые могут
сформулированы как задачи многошагового оптимального управления некоторой системой.

Слайд 28

Элементы модели динамического программирования

 Этап i представляется порядковым номером недели i, i= 1, 2,..., п.
Вариантами решения на i-м этапе

Элементы модели динамического программирования Этап i представляется порядковым номером недели i, i=
являются значения - количество работающих на протяжении i-й недели.
Состоянием на i-м этапе является *м - количество работающих на протяжении (i - 1)-й недели (этапа).

Слайд 29

ПРИМЕР

ПРИМЕР

Слайд 30

ПРИМЕР

ПРИМЕР

Слайд 31

ПРИМЕР

ПРИМЕР

Слайд 32

ПРИМЕР

ПРИМЕР

Слайд 33

ПРИМЕР

ПРИМЕР

Слайд 34

ПРИМЕР

ПРИМЕР

Слайд 35

ПРИМЕР

ПРИМЕР
Имя файла: Математическое-программирование.pptx
Количество просмотров: 40
Количество скачиваний: 0