Паскаль_ЧислМетоды

Содержание

Слайд 2

Численные методы (язык Паскаль)

Тема 1. Решение уравнений

© К.Ю. Поляков, 2008-2009

Численные методы (язык Паскаль) Тема 1. Решение уравнений © К.Ю. Поляков, 2008-2009

Слайд 3

Основные понятия

Типы решения:
аналитическое (точное, в виде формулы)
приближенное (неточное)

Задача: решить уравнение

численные методы

начальное приближение

при

Основные понятия Типы решения: аналитическое (точное, в виде формулы) приближенное (неточное) Задача:
N ⇨ ∞

Слайд 4

Численные методы

Идея: последовательное уточнение решения с помощью некоторого алгоритма.
Область применения: когда найти

Численные методы Идея: последовательное уточнение решения с помощью некоторого алгоритма. Область применения:
точное решение невозможно или крайне сложно.

можно найти хоть какое-то решение
во многих случаях можно оценить ошибку (то есть можно найти решение с заданной точностью)

нельзя найти точное решение
невозможно исследовать решение при изменении параметров
большой объем вычислений
иногда сложно оценить ошибку
нет универсальных методов

Слайд 5

Есть ли решение на [a, b]?

есть решение

нет решения

нет решения

Есть ли решение на [a, b]? есть решение нет решения нет решения

Слайд 6

Метод дихотомии (деление пополам)

Найти середину отрезка [a,b]: c = (a + b)

Метод дихотомии (деление пополам) Найти середину отрезка [a,b]: c = (a +
/ 2;
Если f(c)*f(a)<0, сдвинуть правую границу интервала b = c;
Если f(c)*f(a)≥ 0, сдвинуть левую границу интервала a = c;
Повторять шаги 1-3, пока не будет b – a ≤ ε.

Слайд 7

Метод дихотомии (деления пополам)

простота
можно получить решение с заданной точностью (в пределах точности

Метод дихотомии (деления пополам) простота можно получить решение с заданной точностью (в
машинных вычислений)

нужно знать интервал [a, b]
на интервале [a, b] должно быть только одно решение
большое число шагов для достижения высокой точности
только для функций одной переменной

Слайд 8

Метод деления отрезка пополам

{----------------------------------------------
BinSolve находит решение на [a,b]
методом деления отрезка

Метод деления отрезка пополам {---------------------------------------------- BinSolve находит решение на [a,b] методом деления
пополам
Вход: a, b - границы интервала, a < b
eps - точность решения
Выход: x - решение уравнения f(x)=0
----------------------------------------------}
function BinSolve (a, b, eps: real): real;
var c:real;
begin
while b - a > eps do begin
c := (a + b) / 2;
if f(a)*f(c) < 0 then
b := c
else a := c;
end;
BinSolve := (a + b) / 2;
end;

function f(x:real): real;
begin
f := x*x – 5;
end;

Слайд 9

Как подсчитать число шагов?

function BinSolve (a, b, eps: real;
var N:

Как подсчитать число шагов? function BinSolve (a, b, eps: real; var N:
integer ): real;
var c:real;
begin
N := 0;
while b - a > eps do begin
c := (a + b) / 2;
if f(a)*f(c) < 0 then
b := c
else a := c;
N := N + 1;
end;
BinSolve := (a + b) / 2;
end;

var N: integer

N := 0;

N := N + 1;

значение переменной меняется внутри функции

Слайд 10

Метод итераций (повторений)

Задача:

Эквивалентные преобразования:

имеет те же решения при

Идея решения:

– начальное приближение (например,

Метод итераций (повторений) Задача: Эквивалентные преобразования: имеет те же решения при Идея
с графика)

Проблемы:

как лучше выбрать ?
всегда ли так можно найти решение?

Слайд 11

Сходимость итераций

Сходящийся итерационный процесс: последовательность приближается (сходится) к точному решению.

односторонняя сходимость

двусторонняя сходимость

Сходимость итераций Сходящийся итерационный процесс: последовательность приближается (сходится) к точному решению. односторонняя сходимость двусторонняя сходимость

Слайд 12

Расходимость итераций

Расходящийся итерационный процесс: последовательность неограниченно возрастает или убывает, не приближается к

Расходимость итераций Расходящийся итерационный процесс: последовательность неограниченно возрастает или убывает, не приближается
решению.

односторонняя расходимость

двусторонняя расходимость

Слайд 13

От чего зависит сходимость?

сходится

расходится

Выводы:
сходимость итераций зависит от производной
итерации сходятся при и расходятся

От чего зависит сходимость? сходится расходится Выводы: сходимость итераций зависит от производной
при
сходимость определяется выбором параметра b

Слайд 14

Как выбрать b?

наугад, пробовать разные варианты
для начального приближения x0
пересчитывать на каждом шаге,

Как выбрать b? наугад, пробовать разные варианты для начального приближения x0 пересчитывать на каждом шаге, например:
например:

Слайд 15

Метод итераций (программа)

{----------------------------------------------
Iter решение уравнения методом итераций
Вход: x – начальное

Метод итераций (программа) {---------------------------------------------- Iter решение уравнения методом итераций Вход: x –
приближение
b – параметр
eps - точность решения
Выход: решение уравнения f(x)=0, n - число шагов
----------------------------------------------}
function Iter (x, b, eps: real; var N: integer): real;
var dx: real;
OK: boolean;
begin
N := 0;
OK := False; {еще не нашли}
while not OK and (N < 100) do begin
dx := b*f(x);
x := x + dx;
N := N + 1;
if abs(dx) < eps then OK := True;
end;
Iter := x;
end;

аварийный выход (итерации расходятся)

нормальный выход

Слайд 16

Метод Ньютона (метод касательных)

Метод Ньютона (метод касательных)

Слайд 17

Метод Ньютона (программа)

{----------------------------------------------
Newton решение уравнения методом Ньютона
Вход: x – начальное

Метод Ньютона (программа) {---------------------------------------------- Newton решение уравнения методом Ньютона Вход: x –
приближение
eps - точность решения
Выход: решение уравнения f(x)=0, n - число шагов
----------------------------------------------}
function Newton (x, eps: real; var N: integer): real;
var dx: real;
OK: boolean;
begin
N := 0; OK := False;
while not OK and (N < 100) do
begin
dx := f(x) / df(x);
x := x - dx;
N := N + 1;
OK := abs(dx) < eps;
end;
Newton := x;
end;

{ функция }
function f(x:real): real;
begin
f := 3*x*x*x+2*x+5;
end;
{ производная }
function df(x:real): real;
begin
df := 9*x*x + 2;
end;

Слайд 18

Метод Ньютона

быстрая (квадратичная) сходимость – ошибка на k-ом шаге обратно пропорциональна k2
не

Метод Ньютона быстрая (квадратичная) сходимость – ошибка на k-ом шаге обратно пропорциональна
нужно знать интервал, только начальное приближение
применим для функция нескольких переменных

нужно уметь вычислять производную (по формуле или численно)
производная не должна быть равна нулю
может зацикливаться

Слайд 19

Численные методы (язык Паскаль)

Тема 2. Вычисление площади (интеграла)

© К.Ю. Поляков, 2008-2009

Численные методы (язык Паскаль) Тема 2. Вычисление площади (интеграла) © К.Ю. Поляков, 2008-2009

Слайд 20

Площадь криволинейной трапеции

Площадь криволинейной трапеции

Слайд 21

function Area(x1, x2:real): real;
var x, S, h: real;
begin
S := 0; h

function Area(x1, x2:real): real; var x, S, h: real; begin S :=
:= 0.001; x := x1;
while x < x2 do begin
S := S + h*(f1(x)-f2(x));
x := x + h;
end;
Area := S;
end;

Метод (левых) прямоугольников

y = f1 (x)

y = f2 (x)

S1

S2

S3

S4

S * h;

S := S + f1(x) – f2(x);

Слайд 22

Метод (правых) прямоугольников

x

y

x2

x1

y = f1 (x)

y = f2 (x)

S1

S2

S3

S4

function Area(x1, x2:real): real;
var

Метод (правых) прямоугольников x y x2 x1 y = f1 (x) y
x, S, h: real;
begin
S := 0; h := 0.001; x := x1;
while x < x2 do begin
S := S + h*(f1(x+h)-f2(x+h));
x := x + h;
end;
Area := S;
end;

S * h;

S := S + f1(x+h) – f2(x+h);

Слайд 23

function Area(x1, x2:real): real;
var x, S, h: real;
begin
S := 0; h

function Area(x1, x2:real): real; var x, S, h: real; begin S :=
:= 0.001; x := x1;
while x < x2 do begin
S := S + f1(x+h/2) – f2(x+h/2);
x := x + h;
end;
Area := S*h;
end;

Метод (средних) прямоугольников

x

y

x2

x1

y = f1 (x)

y = f2 (x)

S1

S2

S3

S4

левые (правые):
средние

Слайд 24

x = x1;
while x < x2 do begin
S:= S +

x = x1; while x S:= S + f1(x) – f2(x) +
f1(x) – f2(x)
+ f1(x+h) – f2(x+h);
x:= x + h;
end;
S := S*h/2;

Метод трапеций

x

y

x2

x1

y = f1 (x)

y = f2 (x)

S :=( f1(x1)-f2(x1)+f1(x2)-f2(x2) )/2;
x := x1 + h;
while x < x2 do begin
S := S + f1(x) – f2(x);
x := x + h;
end;
S := S*h;

Слайд 25

Метод Монте-Карло

Применение: вычисление площадей сложных фигур (трудно применить другие методы).
Требования: необходимо уметь

Метод Монте-Карло Применение: вычисление площадей сложных фигур (трудно применить другие методы). Требования:
достаточно просто определять, попала ли точка (x, y) внутрь фигуры.
Пример: заданы 100 кругов (координаты центра, радиусы), которые могу пересекаться. Найти площадь области, перекрытой кругами.

Слайд 26

Метод Монте-Карло

Вписываем сложную фигуру в другую фигуру, для которой легко вычислить площадь

Метод Монте-Карло Вписываем сложную фигуру в другую фигуру, для которой легко вычислить
(прямоугольник, круг, …).
Равномерно N точек со случайными координатами внутри прямоугольника.
Подсчитываем количество точек, попавших на фигуру: M.
4. Вычисляем площадь:

Всего N точек

На фигуре M точек

Метод приближенный.
Распределение должно быть равномерным.
Чем больше точек, тем точнее.
Точность ограничена датчиком случайных чисел.

!

Слайд 27

Численные методы (язык Паскаль)

Тема 3. Вычисление длины кривой

© К.Ю. Поляков, 2008-2009

Численные методы (язык Паскаль) Тема 3. Вычисление длины кривой © К.Ю. Поляков, 2008-2009

Слайд 28

Длина кривой

Точное решение:

нужна формула для производной
сложно взять интеграл

Приближенное решение:

Длина кривой Точное решение: нужна формула для производной сложно взять интеграл Приближенное решение:

Слайд 29

Длина кривой

{----------------------------------------------
CurveLen вычисление длины кривой
Вход: a, b – границы интервала

Длина кривой {---------------------------------------------- CurveLen вычисление длины кривой Вход: a, b – границы
Выход: длина кривой y = f(x) на интервале [a,b]
----------------------------------------------}
function CurveLen(a, b: real): real;
var x, dy, h, L: real;
begin
h := 0.001; L := 0;
x := a;
while x < b do begin
dy := f(x+h) - f(x);
L := L + sqrt(h*h + dy*dy);
x := x + h;
end;
CurveLen := L;
end;

Слайд 30

Численные методы

Тема 4. Оптимизация

© К.Ю. Поляков, 2008-2009

Численные методы Тема 4. Оптимизация © К.Ю. Поляков, 2008-2009

Слайд 31

Найти x, при котором или при заданных ограничениях.

Основные понятия

Оптимизация – поиск оптимального

Найти x, при котором или при заданных ограничениях. Основные понятия Оптимизация –
(наилучшего в некотором смысле) решения.
Цель: определить значения неизвестных параметров, при которых заданная функция достигает минимума (затраты) или максимума (доходы).
Ограничения – условия, которые делают задачу осмысленной.

или

Слайд 32

Локальные и глобальные минимумы

глобальный минимум

Задача: найти глобальный минимум.
Реальность:
большинство известных алгоритмов находят только

Локальные и глобальные минимумы глобальный минимум Задача: найти глобальный минимум. Реальность: большинство
локальный минимум вблизи начальной точки
алгоритмы поиска глобального минимума в общем случае неизвестны

Что делать:
для функций одной переменной начальная точка определяется по графику
случайный выбор начальной точки
запуск алгоритма поиска с нескольких разных точек и выбор наилучшего результата

Слайд 33

Минимум функции одной переменной

Дано: на интервале [a,b] функция непрерывна и имеет единственный

Минимум функции одной переменной Дано: на интервале [a,b] функция непрерывна и имеет
минимум.
Найти: x*

y = f (x)

Принцип сжатия интервала:

Слайд 34

Минимум функции одной переменной

Коэффициент сжатия:

Самое быстрое сжатие:

при

должно быть c ≠ d

Метод «почти

Минимум функции одной переменной Коэффициент сжатия: Самое быстрое сжатие: при должно быть
половинного» деления:

– малое число

нужно искать два значения функции на каждом шаге

Слайд 35

Отношение «золотого сечения»

Идея: выбрать c и d так, чтобы на каждом шаге

Отношение «золотого сечения» Идея: выбрать c и d так, чтобы на каждом
вычислять только одно новое значение функции.

Уравнение для определения g:

Отношение «золотого сечения»:

Слайд 36

Метод «золотого сечения»

{----------------------------------------------
Gold поиск минимума функции («золотое сечение»)
Вход: a, b

Метод «золотого сечения» {---------------------------------------------- Gold поиск минимума функции («золотое сечение») Вход: a,
– границы интервала, eps – точность
Выход: x, при котором f(x) имеет минимум на [a,b]
----------------------------------------------}
function Gold(a, b, eps:real): real;
const g = 0.618034;
var x1, x2, R: real;
begin
R := g*(b - a);
while abs(b-a) > eps do begin
x1 := b - R; x2 := a + R;
if f(x1) > f(x2) then a := x1
else b := x2;
R := R * g;
end;
Gold := (a + b) / 2;
end;

Слайд 37

Функции нескольких переменных

Проблемы:
нет универсальных алгоритмов поиска глобального минимума
неясно, как выбрать начальное приближение

Функции нескольких переменных Проблемы: нет универсальных алгоритмов поиска глобального минимума неясно, как
(зависит от задачи и интуиции)

Подходы:
методы локальной оптимизации (результат зависит от выбора начального приближения)
случайный поиск (без гарантии)
методы глобальной оптимизации (для особых классов функций)

Слайд 38

Метод покоординатного спуска

Идея:
выбираем начальную точку
будем менять только x1, а остальные переменные «заморозим»,

Метод покоординатного спуска Идея: выбираем начальную точку будем менять только x1, а
находим минимум по x1
теперь будем менять только x2, а остальные переменные «заморозим», …

начальное приближение

минимум

простота, сводится к нескольким задачам с одной переменной

можно двигаться к минимуму быстрее
большой объем вычислений
может не найти решение для сложных функций

Слайд 39

Градиентные методы

Градиент – это вектор, показывающий направление наискорейшего возрастания функции.
Идея:
выбираем начальную точку
на

Градиентные методы Градиент – это вектор, показывающий направление наискорейшего возрастания функции. Идея:
каждом шаге двигаемся в направлении, противоположном градиенту

минимум

начальное приближение

быстрая сходимость

необходимо считать производные (по формуле или численно)
плохо работает для быстро меняющихся функций

градиент

Слайд 40

Метод случайного поиска

Идея:
выбираем начальную точку
пробуем сделать шаг в случайном направлении
если значение функции

Метод случайного поиска Идея: выбираем начальную точку пробуем сделать шаг в случайном
уменьшилось, шаг удачный (запоминается)

минимум

начальное приближение

простота реализации
не требует вычисления производных
много вариантов с самообучением
хорошо работает для функций с многими локальными минимумами

очень большой объем вычислений

Имя файла: Паскаль_ЧислМетоды.pptx
Количество просмотров: 50
Количество скачиваний: 0