Содержание
- 2. Психоакустика Звук – аналоговое явление. Поэтому его адекватная обработка цифровыми методами представляет собой сложную проблему. Ее
- 3. Человек очень редко находиться в таком окружении, чтобы был слышен только один источник звука. Обычно их
- 4. Человек способен воспринимать несколько различных параметров звука: громкость, частоту, пространственное положение источника, гармонические колебания. Громкость звука
- 5. Частота звука лучше всего различается в диапазоне 1 - 4 кГц – в среднем с шагом
- 6. Цифровая обработка звука Метод натуральной цифровой записи звука называется PCM (Pulse Code Modulation – импульсно-кодовая модуляция).
- 7. Пространственное звучание Человек слышит двумя ушами и поэтому способен различать направление прихода звуковых сигналов. Эту способность
- 8. Имея всего два источника звука, можно создать у слушателя ощущение наличия мнимого источника зву ка между
- 9. Суть HRTF — накопление библиотеки функций, описывающих психофизическую модель восприятия объемности звучания слуховой системой человека. Для
- 11. зависимость задержки сигнала от положения источника
- 12. Цифровое моделирование трехмерного звука Direct Sound 3D Это основная инфраструктура (помимо A3D2.0), которую Microsoft сделала доступной
- 13. Environmental Audio Extension (EAX) Разработанная и продвигаемая фирмой Creative Labs система пространственной обработки звука Environmental Audio
- 14. Поддержка системы EAX обеспечивается на аппаратном уровне встроенными аудиопроцессорами звуковых плат (звуковыми акселераторами). Разумеется, что в
- 15. Руководствуясь этим подходом, создатели EAX в качестве основы выбрали статическую модель звуковой среды, а не ее
- 16. EAX 3.0 позволяет осуществить контроль за началом реверберации и ранними отражениями для каждого источника звука; реализует
- 17. Aureal 3D A3D стал первым API, поддерживающим аппаратную акселерацию трехмерного звука. A3D 1.х по своим возможностям
- 18. A3D 2.0 -- расширение стандарта A3D. Основной особенностью A3D 2.0 стала технология Wavetracing, которая позволяет существенно
- 19. Sensaura3D Sensaura, в отличии от Aureal или Creative, не производит собственных чипсетов или карт, а только
- 20. Технология ZoomFX предназначена для моделирования звука от крупных объектов, вроде проезжающего рядом поезда. В подавляющем большинстве
- 21. QSound 3D QSound. Разработки этой компании использовались еще для Creative SB AWE64. Большинство технологий QSound не
- 22. Подавляющее большинство новых игр, использующих трехмерный звук, поддерживает и A3D 1.0/2.0 и DirectSound3D+EAX 1.0/2.0, однако переключаться
- 23. Устройство звуковой карты Рассмотрим устройство современной звуковой карты с разъемом PCI. На задней панели расположены разъемы
- 24. Микшеры входа-выхода обычно физически являются единым устройством осуществляющим коммутацию, нормализацию и смешение сигналов. Сигнал может поступать
- 25. Звуковая карта может сама генерировать аудиосигнал. Для этого используют два метода. FM (частотная модуляция) Волновой табличный
- 27. Скачать презентацию
Слайд 2Психоакустика
Звук – аналоговое явление. Поэтому его адекватная обработка цифровыми методами представляет собой
Психоакустика
Звук – аналоговое явление. Поэтому его адекватная обработка цифровыми методами представляет собой
Восприятие звука
Звук представляет собой локальные изменения давления воздуха, происходящие с определенной частотой. Эти изменения воспринимаются органом слуха. Чем больше частота таких изменений, тем более высокий тон слышит человек.
Диапазон звуковых частот, слышимых людьми, в общем случае считается лежащим в границах 20 – 20 000 Гц. Колебания более низкой частоты называют инфразвуком, они не слышны но могут быть болезненны и вызывать чувство тревоги. Колебания высокой частоты называют ультразвуком. Они тоже не слышны но воспринимаются многими животными.
Наилучшее восприятие человеком звука лежит в диапазоне 450 – 4000 Гц (человеческий голос). Именно в этом диапазоне работает пространственна ориентация – определение местоположения источника звука. Звуки выше 4 кГц различаются только по частотам. Пространственное разрешение - низкое.
Диапазон частот воспринимаемых конкретным человеком сильно зависит от его индивидуальных особенностей. Замечены резкие сужения диапазона после 25 лет и после 50 лет (верхняя граница сдвигается до 15-17 кГц). Однако музыканты, звукорежиссеры, композиторы часто избегаю такого спада благодаря опыту.
Слайд 3 Человек очень редко находиться в таком окружении, чтобы был слышен только один
Человек очень редко находиться в таком окружении, чтобы был слышен только один
Человеческие органы слуха стереофонические, то есть левое и правое ухо воспринимают сигнал независимо. Поэтому человек способен выделять определенный звуковой сигнал и определять направление на его источник. Сильное влияние на ориентировку оказывает окружающая обстановка. В условиях многократного отражения и поглощения звука (например в лесу) направление на источник определить трудно.
Органы слуха человека воспринимают результирующую звуковую картину. Поступившие сигналы обрабатываются головным мозгом по индивидуальному алгоритму и интерпретируются в знакомые человеку понятия. Каков алгоритм обработки звука внутри мозга – до сих пор точно не известно
Слайд 4 Человек способен воспринимать несколько различных параметров звука: громкость, частоту, пространственное положение источника,
Человек способен воспринимать несколько различных параметров звука: громкость, частоту, пространственное положение источника,
Громкость звука измеряется в децибелах, по логарифмической шкале, где за 0 принята минимальная громкость звука на частоте 3000 Гц еще различимая человеком (величина звукового давления 4мкПа). В цифровой обработке звука используют обратную шкалу – за 0 принято максимально возможное значение. Без болевых ощущений здоровый человек различает звуки громкостью до 120 дБ. При уровне около 150 дБ происходит повреждение органов слуха. Наиболее высока чувствительность к звукам в диапазоне 1 – 4 кГц. Для звука частотой 100 Гц порог слышимости 40 дБ (то есть с амплитудой в 100 раз больше чем при 3000 Гц). На частоте 10 кГц порог слышимости 210 дБ. Именно поэтому в колонках сабвуферы гораздо мощнее высокочастотные динамики.
Слайд 5 Частота звука лучше всего различается в диапазоне 1 - 4 кГц –
Частота звука лучше всего различается в диапазоне 1 - 4 кГц –
Пространственное разрешение буде рассмотрено отдельно
Гармоники являются основными составляющими звука. Подавляющему числу людей приятны именно гармонические колебания. Такие звуки характерны для живой природы.
Слайд 6Цифровая обработка звука
Метод натуральной цифровой записи звука называется PCM (Pulse Code Modulation
Цифровая обработка звука
Метод натуральной цифровой записи звука называется PCM (Pulse Code Modulation
На качество оцифровки сильно влияет частота с которой берутся амплитуды – частота дискретизации. И величина единичного массива данных – глубина оцифровки, разрядность. Записью хорошего качества считается запись с частотой дискретизации 44100 Гц и глубино оцифровки 16 бит (Audio CD).
Повышение разрядности до 16 бит позволяет расширить охватываемый диапазон до -96 Дб. Однако сигналы с предельным уровнем сливаются с шумами дискретизации. Для определения соотношения сигнал/шум используют формулу
SNR=Vsignal/Vnoise=6,02*N+C (дБ)
Где N разрядность а -15<С<+2 l дБ
Таким образом реально воспринимаемый диапазон ограничен 83 дБ.
В устройствах бытового класса диапазон дополнительно сужается из-за погрешностей аппаратуры и SNR=76-77 дБ. В компьютерных устройствах большинство звуковых плат вносят свои искажения и SNR=60-65 дБ
Слайд 7Пространственное звучание
Человек слышит двумя ушами и поэтому способен различать направление прихода звуковых
Пространственное звучание
Человек слышит двумя ушами и поэтому способен различать направление прихода звуковых
Уши человека расположены на расстоянии друг от друга (по ширине головы). Скорость распространения звуковой волны невелика. Сигнал, приходящий от источника звука, находящегося напротив слушателя, приходит в оба уха одновременно, и мозг интерпретирует это как расположение источника сигнала либо позади, либо спереди, но не сбоку. Если же сигнал приходит от источника, смещенного относительно центра головы, то звук приходит в одно ухо раньше, чем во второе, что позволяет мозгу интерпретировать это как приход сигнала слева или справа и даже приблизительно определить угол прихода. Численно разница во времени прихода сигнала в левое и правое ухо, составляющая от 0 до 1 мс, смещает мнимый источник звука в сторону того уха, которое воспринимает сигнал раньше. Такой способ определения направления прихода звука используется мозгом в полосе частот от 300 Гц до 1 кГц. Направление прихода звука для частот выше 1 кГц определяется мозгом человека путем анализа громкости звука. Дело в том, что звуковые волны с частотой выше 1 кГц быстро затухают в воздушном пространстве. Поэтому интенсивность звуковых волн, доходящих до левого и правого ушей слушателя, отличаются, что позволяет мозгу определять направление прихода сигнала по разнице амплитуд. Если звук в одном ухе слышен лучше, чем в другом, следовательно, источник звука находится со стороны того уха, в котором он слышен лучше. Подспорьем в определении направления прихода звука является способность человека повернуть голову в сторону кажущегося источника звука, чтобы проверить верность определения. Способность мозга определять направление прихода звука по разнице во времени прихода сигнала в левое и правое ухо, а также путем анализа громкости сигнала используется в стереофонии.
Имея всего два источника звука, можно создать у слушателя ощущение наличия мнимого источника зву ка между двумя физическими. Причем этот мнимый источник можно «расположить» в любой точке на линии, соединяющей два физических источника. Для этого нужно воспроизвести одну аудиозапись (например, со звуком рояля) через оба физических источника, но сделать это с некоторой временной задержкой в одном из них и соответствующей разницей в громкости. Грамотно используя описанный эффект, можно при помощи двухканальной аудиозаписи донести до слушателя почти такую картину звучания, какую он ощутил бы сам, лично присутствуя, например, на каком-нибудь концерте. Такую двухканальную запись называют стереофонической. Одноканальная же запись называется монофонической.
На самом деле для качественного донесения до слушателя реалистичного пространственного звучания обычной стереофонической записи не всегда достаточно. Основная причина этого кроется в том, что стереосигнал, приходящий к слушателю от двух физических источников звука, определяет расположение мнимых источников лишь в той плоскости, в которой расположены реальные физические источники звука. Естественно, «окружить слушателя звуком» при этом не удается. По той же причине заблуждением является и мысль о том, что объемное звучание обеспечивается квадрофониче-ской (четырехканальной) системой (два источника перед слушателем и два позади него). В целом путем выполнения многоканальной записи нам удается лишь донести до слушателя тот звук, каким он был «услышан» расставленной нами звуковоспринимающей аппаратурой (микрофонами). Для воссоздания же более или менее реалистичного, действительно объемного звучания прибегают к принципиально другим подходам, в основе которых лежат более сложные приемы, моделирующие особенности слуховой системы человека, а также физические особенности и эффекты передачи звуковых сигналов в пространстве.
Слайд 8Имея всего два источника звука, можно создать у слушателя ощущение наличия мнимого
Имея всего два источника звука, можно создать у слушателя ощущение наличия мнимого
На самом деле для качественного донесения до слушателя реалистичного пространственного звучания обычной стереофонической записи не всегда достаточно. Основная причина этого кроется в том, что стереосигнал, приходящий к слушателю от двух физических источников звука, определяет расположение мнимых источников лишь в той плоскости, в которой расположены реальные физические источники звука. Естественно, «окружить слушателя звуком» при этом не удается. По той же причине заблуждением является и мысль о том, что объемное звучание обеспечивается квадрофониче-ской (четырехканальной) системой (два источника перед слушателем и два позади него). В целом путем выполнения многоканальной записи нам удается лишь донести до слушателя тот звук, каким он был «услышан» расставленной нами звуковоспринимающей аппаратурой (микрофонами). Для воссоздания же более или менее реалистичного, действительно объемного звучания прибегают к принципиально другим подходам, в основе которых лежат более сложные приемы, моделирующие особенности слуховой системы человека, а также физические особенности и эффекты передачи звуковых сигналов в пространстве.
Один из таких инструментов — использование функций HRTF (Head Related Transfer Function). Этот метод (по сути — библиотеки функций) позволяет специальным образом преобразовать звуковой сигнал и обеспечить достаточно реалистичное объемное звучание, рассчитанное на прослушивание даже в наушниках.
Слайд 9Суть HRTF — накопление библиотеки функций, описывающих психофизическую модель восприятия объемности звучания
Суть HRTF — накопление библиотеки функций, описывающих психофизическую модель восприятия объемности звучания
Таким образом, HRTF представляет собой набор трансформаций, которые претерпевает звуковой сигнал на пути от источника звука к слуховой системе человека. Рассчитанные однажды опытным путем HRTF могут быть применены для обработки звуковых сигналов с целью имитации реальных изменений звука на его пути от источника к слушателю. HRTF имеет, конечно, и недостатки, однако в целом идея использования HRTF вполне удачна. Реализация HRTF в том или ином виде лежит в основе ряда современных технологий пространственного звучания, таких, как QSound 3D (Q3D), ЕАХ, Aureal3D (A3D) и др.
Записи сделанные с использованием HRTF называются binaural recording и стоят дороже обычных
Слайд 11зависимость задержки сигнала от положения источника
зависимость задержки сигнала от положения источника
Слайд 12Цифровое моделирование трехмерного звука
Direct Sound 3D
Это основная инфраструктура (помимо A3D2.0), которую Microsoft
Цифровое моделирование трехмерного звука
Direct Sound 3D
Это основная инфраструктура (помимо A3D2.0), которую Microsoft
В нынешних версиях (в DirectX 7/8/9) DirectSound3D, доступна такая новая функция, как искусственное эхо и другие характеристики.
Звуковая картина в DirectSound3D создается довольно-таки просто. Каждому источнику звука в игре присваивается набор таких характеристик: исходная громкость, радиусы ближней и дальней зоны. Значение этих параметров проще всего пояснить на примере. Пусть исходная громкость объекта равна 100, радиус ближней зоны -- 5 метров, радиус дальней зоны -- 50 метров. Тогда, если расстояние между источником и слушателем составляет от 0 до 5 метров, громкость будет оставаться равной 100. На расстояниях от 5 до 50 метров громкость будет уменьшаться пропорционально 1/Rn (обычно n=1). И, наконец, после 50 метров громкость перестанет уменьшаться и будет оставаться постоянной
На основе информации о координатах и скоростях источников звука относительно слушателя формируется трехмерный звуковая картина. Координаты нужны для позиционирования и определения громкости объектов, а скорости используются для учета эффекта Доплера.
Если звуковая карта не поддерживает аппаратную акселерацию трехмерного звука, DirectSound3D может произвести реэндеринг при помощи встроенного программного движка -- DirectSound3D HEL (Hardware Emulation Level), однако HEL обеспечивает только минимальны набор функций (никакой трехмерности практически не ощущается) и при этом потребляет огромное количество ресурсов CPU.
Слайд 13Environmental Audio Extension (EAX)
Разработанная и продвигаемая фирмой Creative Labs система пространственной обработки
Environmental Audio Extension (EAX)
Разработанная и продвигаемая фирмой Creative Labs система пространственной обработки
Под понятием «реверберация» (от ср .-век. лат. reverberatio - отражение) понимают послезвучание, сохраняющееся после выключения источника звука и обусловленное неодновременным приходом в данную точку отраженных или рассеянных звуковых волн. Реверберация оказывает значительное влияние на слышимость речи и музыки в помещении.
EAX также включает в себя набор функций API, позволяющих программисту воспользоваться аппаратной поддержкой EAX. EAX API является расширением базовой системы создания объемного звука DirectSound3D. Во время работы EAX приложения процесс обработки звука разделяется: DirectSound3D управляет местоположением, скоростью движения в 3D пространстве источников звука и слушателя, а EAX вносит в звук такие изменения, которые характеризуют окружающее источник звука пространство.
Слайд 14Поддержка системы EAX обеспечивается на аппаратном уровне встроенными аудиопроцессорами звуковых плат (звуковыми
Поддержка системы EAX обеспечивается на аппаратном уровне встроенными аудиопроцессорами звуковых плат (звуковыми
Изначально предполагалось, что EAX не будет использовать геометрическую модель сцены, то есть источники звука могли быть не связаными с графическими объектами. Главное было создать звуковую атмосферу игровой сцены, то есть воздействовать на эмоциональное состояние игрока подобно тому, как в кинофильме звуковое сопровождение всегда подчеркивает остроту переживаний, акцентируясь на самом важном и пренебрегая незначительными звуковыми подробностями.
Слайд 15Руководствуясь этим подходом, создатели EAX в качестве основы выбрали статическую модель звуковой
Руководствуясь этим подходом, создатели EAX в качестве основы выбрали статическую модель звуковой
EAX 1.0 Поддерживает изменение места реверберации и отражений; имеет большое количество пресетов; позволяет (с некоторыми ограничениями) изменять реверберационные параметры помещения; автоматически менять интенсивность реверберации, в зависимости от положения источника звука. EAX 1.0 строит звуковую сцену на основе заранее созданных пресетов, учитывая дистанцию между источниками звука и слушателем.
EAX 2.0 Обновлена реверберационная модель; добавлены эффекты звуковых преград (Occlusions) и препятствий (Obstructions); реализовано отдельное управление ранними и поздними отражениями; возможен продолжительный контроль размеров помещений; учитываются акустические свойства воздуха (поглощение звука).
Слайд 16EAX 3.0 позволяет осуществить контроль за началом реверберации и ранними отражениями для
EAX 3.0 позволяет осуществить контроль за началом реверберации и ранними отражениями для
Creative Audigy2 ZS Platinum Pro (с внешним блоком)
7.1, Fireware, EAX4.0 Advanced HD, ASIO 2.0, OpenAL
Слайд 17Aureal 3D
A3D стал первым API, поддерживающим аппаратную акселерацию трехмерного звука.
A3D 1.х
Aureal 3D
A3D стал первым API, поддерживающим аппаратную акселерацию трехмерного звука.
A3D 1.х
A3D 1.х является "родным" API для карт на чипсетах Aureal Vortex 1 (AU8820) и Vortex Advatage (AU8810). Перечислю наиболее популярные карты на этих чипсетах: Diamond Sonic Impact S90, Turtle Beach Montego, Aztech PCI-338-A3D, Genius SoundMaker 64 и, конечно же, одноименные чипсетам OEM карты Aureal. Естественно, стандарт A3D 1.х поддерживают и карты на Vortex 2, но о них -- чуть позже. Поддержка A3D 1.х на уровне драйверов реализована во многих картах для которых "родными" API являются Sensaura и Q3D. Драйвера этих карт просто преобразовывают команды A3D в команды родных API. Как и в случае с трехмерной графикой, качество реализации таких "врапперов" бывает разным и зависит от конкретного производителя. Стоит упомянуть драйвер A2D от Aureal который реализует поддержку A3D через DirectSound3D. Названием A2D Aureal подчеркивает неполноценность этого драйвера. Действительно A2D реализует далеко не все функции A3D 1.х (не говоря уже о более поздних версиях A3D), однако с помощью этого драйвера можно получить неплохой трехмерный звук в играх с поддержкой A3D.
Слайд 18A3D 2.0 -- расширение стандарта A3D. Основной особенностью A3D 2.0 стала технология
A3D 2.0 -- расширение стандарта A3D. Основной особенностью A3D 2.0 стала технология
В реальном мире мы слышим не только "прямые" звуки но и звуки претерпевшие отражения или прошедшие сквозь препятствия. Причем то, как звуки будут отражаться, искажаться при прохождении через препятствия и поглощаться зависит не только от геометрии окружающей среды, но и, например, от материала из которого изготовлены стены (напрашивается аналогия с полигонами и текстурами в трехмерной графике). Расчет Wavetracing происходит в реальном времени. То есть если изменилась геометрия окружающего пространства (игрок забежал за колонну или открылась дверь в другую комнату) -- тут же изменятся условия распространения звука. Естественно, что такой подход к расчету звуковой картины предъявляет очень большие требования к вычислительным ресурсам как звукового процессора так и CPU. Поэтому при включении A3D 2.0 количество FPS (кадров в секунду) падает довольно-таки существенно. При этом падение FPS намного больше, чем при использовании, скажем DirectSound3D+EAX (о сравнительных характеристиках разных API мы поговорим дальше). Однако стоит послушать как звучит A3D 2.0 в Unreal, Unreal Tournament или HalfLife, и вы сразу поймете, что FPS потрачены не зря!
Технологию A3D 2.0 поддерживают только карты на чипсете Aureal Vortex 2 (AU8830). Перечислю наиболее популярные из них: Diamond Monster Sound MX300, Turtle Beach Montego II, Aureal SQ2200, Aureal SQ2500 (Super Quad Digital) и OEM карты Aureal Vortex 2. Нужно отметить, что Aureal SQ2500 основана на модифицированном варианте Vortex 2 и поэтому демонстрирует наилучшую производительность среди перечисленных звуковых карт.
Слайд 19Sensaura3D
Sensaura, в отличии от Aureal или Creative, не производит собственных чипсетов или
Sensaura3D
Sensaura, в отличии от Aureal или Creative, не производит собственных чипсетов или
Sensaura3D совместима с DirectSound3D EAX 1.0, EAX 2.0, A3D 1.0 и понимает команды этих API. Таким образом, на картах с технологией Sensaura можно наслаждаться 3D-звуком не только в играх для данного API (игр с поддержкой Sensaura еще очень немного) но и в играх с поддержкой ранних версий EAX и A3D (а таковых сейчас подавляющее большинство). Хотя в этом случае нельзя гарантировать, что звук в таких играх будет таким же как для родных для EAX или A3D карт.
Технология MacroFX используется для наиболее реалистичного позиционирования звука. Как и в DirectSound3D, в Sensaura3D окружающее пространство разбивается на зоны. Однако в отличие от DirectSound3D, MacroFX предусматривает разбиение на большее количество зон. Обратите внимание на зоны 3,4,5 на рисунке, которые не имеют аналогов в DirectSound3D. Наличие зон 3 и 4 позволяет моделировать такие эффекты как шепот в ухо или свист пуль, пролетающих в непосредственной близости от головы. Интересна также зона 5, которая предназначена для моделирования источников звуков, находящихся в голове
Слайд 20Технология ZoomFX предназначена для моделирования звука от крупных объектов, вроде проезжающего рядом
Технология ZoomFX предназначена для моделирования звука от крупных объектов, вроде проезжающего рядом
Для создания реалистичного звука в помещениях используется технология EnvironmentFX которая по своим функциям во многом напоминает EAX. Однако, EnvironmentFX содержит ряд интересных особенностей (обработка ранних отражений, отражений от движущихся поверхностей, "растройка" звука и др.).
Технология MultiDrive, предназначена для расширения "зоны трехмерности" звука
Разработка под названием Digital Ear позволяет настроить параметры трехмерного звука под конкретного слушателя. При этом учитываются размеры головы, размеры ушей, глубина и тип ушной раковины.
В общем, Sensaura обладает всеми необходимыми средствами для создания реалистичного трехмерного звука в играх. Жаль только, что разработчики игр пока не используют все возможности этой технологии.
Звуковые чипсеты, поддерживающие Sensaura очень сильно сотличаются по своим характеристикам, поэтому нельзя сказать что при использовании Sensaura звук будет одинаковым на всех картах. Более того, те возможности Sensaura, которые на одних картах реализованы аппаратно, на других будут реализовываться при помощи CPU. Как яркий пример диаметрально разных по цене и возможностям чипсетов под Sensaura можно привести Maestro и Canyon3D (оба чипсета производства ESS). Если первый может аппаратно ускорять только 5 потоков трехмерного звука то второй -- 32 и к тому же обладает огромным количеством разных "наворотов". Именно на этом чипсете и построена новая карта от Diamond Multimedia -- Monster Sound MX400. Благодаря отличному соотношению цена/качество заслуженной популярностью пользуются карты на чипсете Yamaha 724 (Genius SoundMaker 128XG, Yamaha WaveForce 192D, и многочисленные ОЕМ карты одноименные чипсету). Сейчас на смену этому чипсету пришел новый -- Yamaha 744
Слайд 21 QSound 3D
QSound. Разработки этой компании использовались еще для Creative SB AWE64.
QSound 3D
QSound. Разработки этой компании использовались еще для Creative SB AWE64.
Среди новых чипсетов, поддерживающих Q3D 2.0 стоит упомянуть Trident 4DWAVE-DX и VLSI Thunderbird 128. Кстати на основе последнего сделана очень популярная у нас карта Aztech 368DSP.
Interactive Active Sound
Фирма EAR разработала технологию IAS для воспроизведения трехмерного звука в форматах EAX и A3D через 4 и более колонок. Технология независима от аппаратной части и прозрачна для API DirectSound3D и DirectMusic. Единый интерфейс обеспечивает воспроизведение трехмерного звука на любой системе
Слайд 22Подавляющее большинство новых игр, использующих трехмерный звук, поддерживает и A3D 1.0/2.0 и
Подавляющее большинство новых игр, использующих трехмерный звук, поддерживает и A3D 1.0/2.0 и
Слайд 23Устройство звуковой карты
Рассмотрим устройство современной звуковой карты с разъемом PCI. На задней
Устройство звуковой карты
Рассмотрим устройство современной звуковой карты с разъемом PCI. На задней
Line In разъем типа мини-джек. Предназначен для подключения внешних источников звука: тюнеров, DVD/CD пллерови др. Чувствительность обычно составляет 0,1-0,3 В. Сигнал полностью проходит звуковой тракт
Mic In микрофонный вход. Тип разъема – мини-джек. Используется для подключения микрофонов. Обладает чувствительностью 3-10 мВ. Сигнал обрабатывается предусилителем затем проходит через звуковой тракт
Aux In (микшерный вход), обычно типа мини-джек. Используется для подключения внешнего источника сигнала, который нужно смешать с внутренним источником. Сигнал поступает на выходной микшер минуя звуковой тракт.
MIDI служит для подключения джойстика или электронных музыкальных инструментов. Порт двунаправленный.
Внутренний Aydio CD используется для подключения выходного аудиоканала CD-ROM. При этом сигнал минует усилитель CD-ROM и поступает в звуковой тракт на прямую.
S/PDIF цифровой интерфейс для передачи звуковых сигналов в цифровой форме на внешние компоненты.
Выходы звуковой платы обычно именуются
Line Out сигнал выводиться без предусиления
Speaker Out. сигнал выводиться с предусилением
Все они подключаются через выходной микшер.
Слайд 24Микшеры входа-выхода обычно физически являются единым устройством осуществляющим коммутацию, нормализацию и смешение
Микшеры входа-выхода обычно физически являются единым устройством осуществляющим коммутацию, нормализацию и смешение
Сигнал может поступать на микшер через усилитель или минуя его. Усилитель обычно имеет выходную мощность не более 4 Вт на канал и предпочтительнее использовать внешние усилители.
Кодек отвечает за оцифровку звука и превращение цифрового звука в аналоговый сигнал. Все сигналы проходящие через звуковой тракт, за исключением S/PDIF проходят через кодек.
Слайд 25Звуковая карта может сама генерировать аудиосигнал. Для этого используют два метода.
FM
Звуковая карта может сама генерировать аудиосигнал. Для этого используют два метода.
FM
Волновой табличный синтез (WTS) который работает на основе таблицы образцов звучания музыкальных инструментов и т.п. источников звука.