Electrical properties

Содержание

Слайд 2

2

• Scanning electron microscope images of an IC:

• A dot map showing

2 • Scanning electron microscope images of an IC: • A dot
location of Si (a semiconductor):
--Si shows up as light regions.

• A dot map showing location of Al (a conductor):
--Al shows up as light regions.

Fig. (a), (b), (c) from Fig. 18.0, Callister 6e.

Fig. (d) from Fig. 18.25, Callister 6e. (Fig. 18.25 is courtesy Nick Gonzales, National Semiconductor Corp., West Jordan, UT.)

(a)

(b)

(c)

(d)

VIEW OF AN INTEGRATED CIRCUIT

Слайд 3

3

• Ohm's Law:

ΔV = I R

voltage drop (volts)

resistance (Ohms)

current (amps)

• Resistivity, ρ

3 • Ohm's Law: ΔV = I R voltage drop (volts) resistance
and Conductivity, σ:
--geometry-independent forms of Ohm's Law

E: electric
field
intensity

resistivity
(Ohm-m)

J: current density

conductivity

• Resistance:

ELECTRICAL CONDUCTION

Слайд 4

4

• Room T values (Ohm-m)

-1

Selected values from Tables 18.1, 18.2, and 18.3,

4 • Room T values (Ohm-m) -1 Selected values from Tables 18.1,
Callister 6e.

CONDUCTIVITY: COMPARISON

Слайд 5

5

• Question 18.2, p. 649, Callister 6e:

What is the minimum diameter (D)

5 • Question 18.2, p. 649, Callister 6e: What is the minimum
of the wire so that
ΔV < 1.5V?

< 1.5V

2.5A

6.07 x 10 (Ohm-m)

7

-1

100m

Solve to get D > 1.88 mm

EX: CONDUCTIVITY PROBLEM

Слайд 6

6

• Metals:
-- Thermal energy puts
many electrons into
a higher energy state.

6 • Metals: -- Thermal energy puts many electrons into a higher
Energy States:
-- the cases below
for metals show
that nearby
energy states
are accessible
by thermal
fluctuations.

CONDUCTION & ELECTRON TRANSPORT

Слайд 7

7

• Insulators:
--Higher energy states not
accessible due to gap.

• Semiconductors:
--Higher

7 • Insulators: --Higher energy states not accessible due to gap. •
energy states
separated by a smaller gap.

ENERGY STATES: INSULATORS AND SEMICONDUCTORS

Слайд 8

• Imperfections increase resistivity
--grain boundaries
--dislocations
--impurity atoms
--vacancies

8

These act to

• Imperfections increase resistivity --grain boundaries --dislocations --impurity atoms --vacancies 8 These
scatter
electrons so that they
take a less direct path.

• Resistivity
increases with:
--temperature
--wt% impurity
--%CW

Adapted from Fig. 18.8, Callister 6e. (Fig. 18.8 adapted from J.O. Linde, Ann. Physik 5, p. 219 (1932); and C.A. Wert and R.M. Thomson, Physics of Solids, 2nd ed., McGraw-Hill Book Company, New York, 1970.)

METALS: RESISTIVITY VS T, IMPURITIES

Слайд 9

9

• Question:

--Estimate the electrical conductivity of a Cu-Ni alloy
that has a

9 • Question: --Estimate the electrical conductivity of a Cu-Ni alloy that
yield strength of 125MPa.

Adapted from Fig. 18.9, Callister 6e.

Adapted from Fig. 7.14(b), Callister 6e.

EX: ESTIMATING CONDUCTIVITY

Слайд 10

10

• Data for Pure Silicon:
--σ increases with T
--opposite to metals

electrons
can

10 • Data for Pure Silicon: --σ increases with T --opposite to
cross
gap at
higher T

material
Si
Ge
GaP
CdS

band gap (eV)
1.11
0.67
2.25
2.40

Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

Selected values from Table 18.2, Callister 6e.

PURE SEMICONDUCTORS: CONDUCTIVITY VS T

Слайд 11

• Electrical Conductivity given by:

11

# electrons/m

3

electron mobility

# holes/m

3

hole mobility

• Concept of electrons

• Electrical Conductivity given by: 11 # electrons/m 3 electron mobility #
and holes:

Adapted from Fig. 18.10, Callister 6e.

CONDUCTION IN TERMS OF ELECTRON AND HOLE MIGRATION

Слайд 12

12

• Intrinsic:
# electrons = # holes (n = p)
--case for

12 • Intrinsic: # electrons = # holes (n = p) --case
pure Si

• Extrinsic:
--n ≠ p
--occurs when impurities are added with a different
# valence electrons than the host (e.g., Si atoms)

• N-type Extrinsic: (n >> p)

• P-type Extrinsic: (p >> n)

INTRINSIC VS EXTRINSIC CONDUCTION

Слайд 13

13

• Data for Doped Silicon:
--σ increases doping
--reason: imperfection sites
lower

13 • Data for Doped Silicon: --σ increases doping --reason: imperfection sites
the activation energy to
produce mobile electrons.

Adapted from Fig. 19.15, Callister 5e. (Fig. 19.15 adapted from G.L. Pearson and J. Bardeen, Phys. Rev. 75, p. 865, 1949.)

• Comparison: intrinsic vs
extrinsic conduction...
--extrinsic doping level:
1021/m3 of a n-type donor
impurity (such as P).
--for T < 100K: "freeze-out"
thermal energy insufficient to
excite electrons.
--for 150K < T < 450K: "extrinsic"
--for T >> 450K: "intrinsic"

Adapted from Fig. 18.16, Callister 6e. (Fig. 18.16 from S.M. Sze, Semiconductor Devices, Physics, and Technology, Bell Telephone Laboratories, Inc., 1985.)

DOPED SEMICON: CONDUCTIVITY VS T

Слайд 14

14

• Allows flow of electrons in one direction only (e.g., useful
to

14 • Allows flow of electrons in one direction only (e.g., useful
convert alternating current to direct current.
• Processing: diffuse P into one side of a B-doped crystal.
• Results:

--No applied potential:
no net current flow.

--Forward bias: carrier
flow through p-type and
n-type regions; holes and
electrons recombine at
p-n junction; current flows.

--Reverse bias: carrier
flow away from p-n junction;
carrier conc. greatly reduced
at junction; little current flow.

P-N RECTIFYING JUNCTION

Слайд 15

15

• Electrical conductivity and resistivity are:
--material parameters.
--geometry independent.
• Electrical resistance

15 • Electrical conductivity and resistivity are: --material parameters. --geometry independent. •
is:
--a geometry and material dependent parameter.
• Conductors, semiconductors, and insulators...
--different in whether there are accessible energy
states for conductance electrons.
• For metals, conductivity is increased by
--reducing deformation
--reducing imperfections
--decreasing temperature.
• For pure semiconductors, conductivity is increased by
--increasing temperature
--doping (e.g., adding B to Si (p-type) or P to Si (n-type).

SUMMARY

Имя файла: Electrical-properties.pptx
Количество просмотров: 116
Количество скачиваний: 0