Содержание
- 2. Лекция 4. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ 4.1 Генерация ЭМВ Сегодня: * 4.2 Дифференциальное уравнение ЭМВ 4.3 Экспериментальное исследование
- 3. 4.1 Генерация ЭМВ Максвелл Джеймс Клерк (1831 – 1879) – английский физик, член Эдинбургского (1855) и
- 4. Герц Генрих Рудольф (1857 – 1894) – немецкий физик. Окончил Берлинский университет (1880 г.) и был
- 5. В колебательном контуре, образованном конденсатором С и катушкой L, электрическое поле сосредоточено в зазоре между обкладками,
- 6. Вибратор Герца Вибратор R – разрядник; Т - газоразрядная трубка; D – дроссели. Резонатор Движущийся с
- 7. ЭМВ распространяются в пространстве, удаляясь от вибратора во все стороны. В любой точке векторы напряженности электрического
- 8. Поля изменяют свое направление в пространстве: в одних точках вектор Н направлен к плоскости страницы, в
- 9. Электромагнитные волны представляют собой поперечные волны и, в этом, аналогичны другим типам волн. Однако в ЭМВ
- 10. 4.2 Дифференциальное уравнение ЭМВ Векторы напряженности и поля удовлетворяют волновым уравнениям типа электромагнитного где – оператор
- 11. Фазовая скорость ЭМВ определяется выражением где – скорость света в вакууме; В веществе скорость распространения электромагнитных
- 12. Скорость распространения электромагнитных волн в среде зависит от ее электрической и магнитной проницаемостей. Величину абсолютным показателем
- 13. ω – круговая частота, φ – начальная фаза колебаний в точках с координатой – волновое число,
- 14. Таким образом: • векторы взаимно перпендикулярны, т. к. и направлены одинаково; • электромагнитная волна является поперечной;
- 15. 4.3 Энергия и импульс ЭМП Распространение электромагнитных волн связано с переносом ЭМ энергии (подобно тому, как
- 16. Для характеристики переносимой волной энергии русским ученым Н.А. Умовым были введены понятия о скорости и направлении
- 17. Поток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени: Объемная плотность энергии w
- 18. Вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за
- 19. “Электромагнитная” масса и импульс Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю (световым
- 20. Опыты Герца были продолжены П. Н. Лебедевым, который в 1894 г. получил ЭМВ длиной 4 –
- 21. Опыт Герца с металлическими параболическими зеркалами и призмой Установлена полная аналогия преломления и отражения ЭМВ со
- 22. Усовершенствовав вибратор Герца и применив свой приемник, профессор Петербургского электротехнического института А.С. Попов 1896 г. наладил
- 23. 4.5. Шкала ЭМВ В оптике условно рассматривается три области: Длина волны (λ) геометрическая оптика. λ сравнима
- 27. КОРПУСКУЛЯРНО-ВОЛНОВАЯ ТЕОРИЯ СВЕТА. ИНТЕРФЕРЕНЦИЯ СВЕТА 3.5 Развитие взглядов на природу света 3.6 Интерференция световых волн 3.7
- 28. 3.5 Развитие взглядов на природу света Основные законы геометрической оптики известны ещё с древних времен. Так,
- 29. Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю. Простейшие оптические
- 30. постоянная равная отношению скорости света в среде Законы отражения и преломления света: ; (угол падения равен
- 31. Опубликовал в 1690 г. созданную им волновую теорию света, объяснил двойное лучепреломление. Усовершенствовал телескоп; сконструировал окуляр,
- 32. Принцип Гюйгенса Каждая точка, до которой доходит световое возбуждение, является в свою очередь центром вторичных волн;
- 33. Ферма Пьер (1601 – 1665) – французский математик и физик. Его исследования относятся в большинстве к
- 34. Согласно принципу Ферма, свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время.
- 35. Начало XIX в. характеризуется интенсивным развитием математической теории колебаний и волн и ее приложением к объяснению
- 36. Френель Огюст Жан (1788 -1827) - французский физик, член Парижской академии наук (1788 -1827) - французский
- 37. Фраунгофер Йозеф (1787-1826) - немецкий физик, профессор Мюнхенского университета. Научные работы относятся к физической оптике (1787-1826)
- 38. Волновые свойства света наиболее отчетливо обнаруживают себя в интерференции и дифракции. Пусть две волны одинаковой частоты,
- 39. Амплитуда результирующего колебания при сложении колебаний направленных вдоль одной прямой Если разность фаз колебаний возбужденных волнами
- 40. В случае некогерентных волн разность фаз непрерывно изменяется. Для некогерентных источников интенсивность результирующей волны всюду одинакова
- 41. В случае когерентных волн (для каждой точки пространства) так, что (7.2.2) Последнее слагаемое в этом выражении
- 42. Некогерентность естественных источников света обусловлена тем, что излучение тела слагается из волн, испускаемыми многими атомами. Периодическая
- 43. Условие максимума и минимума интерференции а вторая разности фаз двух когерентных волн Оптическая разность хода двух
- 44. Если разность хода равна целому числу длин волн в вакууме условие интерференционного максимума. Если оптическая разность
- 45. 3.7. Опыт Юнга Расстояние l от щелей, причем Показатель преломления среды – n.
- 50. Расстояние между двумя соседними максимумами (или минимумами) равно максимумы интенсивности будут наблюдаться в случае, если (m
- 51. Главный максимум, соответствующий проходит через точку О. Вверх и вниз от него располагаются максимумы (минимумы) первого
- 52. Принцип Гюйгенса и законы геометрической оптики Когда фронт волны достигнет отражающей поверхности в точке А, эта
- 53. Тогда ВС = сΔt. За это же время фронт волны, возбуждаемой точкой А в среде со
- 54. 3.8 Методы наблюдения интерференции Опыт Юнга Рисунок 7.5
- 55. Зеркала Френеля Рисунок 7.6
- 56. Бипризма Френеля Рисунок 7.7
- 57. Билинза Бийе Рисунок 7.8
- 58. а - световые лучи, отражаясь от верхней и нижней поверхностей тонкого воздушного клина, интерферируют и образуют
- 59. Полосы равного наклона
- 60. Для наблюдения полос равного наклона вместо плоскопараллельной пластинки удобно использовать интерферометр Майкельсона Рисунок 7.11 интерференционные полосы
- 61. Интерференция от клина. Полосы равной толщины В белом свете интерференционные полосы окрашены. Поэтому такое явление называют
- 62. Полосы равной толщины
- 63. Кольца Ньютона Ньютон объяснил это явление на основе корпускулярной теории света. Кольцевые полосы равной толщины, наблюдаемые
- 64. Кольца Ньютона темного кольца m-го радиус
- 65. Итак: полосы равного наклона получаются при освещении пластинки постоянной толщины ( ) рассеянным светом в котором
- 66. 3.10 Применение интерференции света • Тот факт, что расположение интерференционных полос зависит от длины волны и
- 67. • Кроме того, по интерференционной картине можно выявлять и измерять неоднородности среды (в т.ч. фазовые), в
- 68. • Интерференционные волны от отдельных «элементарных» излучателей используется при создании сложных излучающих систем (антенн) для электромагнитных
- 70. • Получение высокоотражающих электрических зеркал Для получения коэффициента отражения (такие зеркала используются в лазерных резонаторах) надо
- 72. Скачать презентацию