Содержание
- 2. Project Summary Explanation of the Brake Model Nissan’s Data Set Summary of existing dataset Applying Pitstop
- 3. Brake model is working xxx xxx Comparison to mileage based shows a distinct advantage xxx xxx
- 4. TL;DR the existing dataset can be used for a brake model Secret Sauce: Combining telematics, service
- 5. Detect when braking events occur. Calculating a metric of brake usage per vehicle - energy dissipation
- 6. The data has good attributes for Brake Predictions High resolution data from a small volume of
- 7. High resolution data from a small volume of vehicles (Engineering test fleet) Trip data does not
- 8. Applying the brake model - exploration on FET data Expectation is satisfied with engineering test fleet
- 9. Front Left Inner Front left Outer Front Right Inner Front Right Outer Rear Left Inner Rear
- 10. The brake model is showing Success & validation Showcase accuracies and strong signs of success with
- 11. Next steps to further prove out the brake model High resolution data helps create accurate dissipation
- 12. Steps to validate the model Step 1: calculate the dissipation for each vehicle and assign it
- 13. Validate the model Step 3: Comparison between each cohort (blue dotted line) and the average (orange
- 14. Alert would be early. This leads to customer trust issues. “ The dealer just wants me
- 15. Summary: Expected conclusion of phase 2 We expect phase 2 will prove that the brake model
- 16. Nissan Roadmap to Additional Predictions
- 17. Pitstop’s current Models How the Pitstop data engine works Current Pitstop Models / Data Requirements Custom
- 18. Time series sensor data Repair order data Pitstop insights
- 19. Existing Predictive Algorithms: Battery Failure Predictions Engine Timing/Combustion Failures Transmission failure predictions Emissions Analytics Diesel Engine
- 20. Battery Remove no start scenarios Reduce electrical failures Examples include: Battery, Alternator, Starters, Parasitic loads etc..
- 21. Recommendation to extract further value Underinflation & Leakage Load & Utilization Monitoring Pad Wear Insights Tread
- 22. Additional Algorithm Details Problem Delivery Van Sliding Door was not intended to open and close 100’s
- 23. The Nissan data has good attributes for models High resolution data from a small volume of
- 24. The dataset overall does have challenges & gaps The dataset consists of telematics generated and service
- 25. Recommendation to extract further value Start by asking what types of value propositions are most important
- 26. TL;DR the existing dataset can be used for a brake model From the existing list of
- 27. Steps required to track Brake Wear Detect when braking events occur. Calculating a metric of brake
- 28. Custom Algorithm Example Problem: Delivery Van Sliding Door was not intended to open and close 100’s
- 29. Start by asking what types of value propositions are most important to the market. For example
- 30. Start by asking what types of value propositions are most important to the market. For example
- 31. Recommendation to extract further value 67%
- 32. Start by asking what types of value propositions are most important to the market. For example
- 33. Start by asking what types of value propositions are most important to the market. For example
- 34. Recommendation to extract further value
- 35. Text
- 39. Скачать презентацию




































Основы организации деятельности: теория управления и практические рекомендации
Политический режим: понятие, признаки, виды
Кодирование информации. Языки кодирования
История преображения
Пособие для работы с младшими школьниками
Презентация на тему Невская битва
Английская революция XVII века и её последствия
Защищённый грунт. Урок сельскохозяйственного труда
Ощущение
6b_i
Комбинаторика - первый шаг в большую науку
EDISON. Центр разработки программного обеспечения Платформа предназначена для построения систем электронного документооборота, ко
Русские и немцы глазами друг друга
Теорема Штейнера
Расширенная классификация международных услуг по методологии платежного баланса
Доменное имя и бренд. Как защитить свои интересы?
Джованни Салветти
Презентация на тему Сказы П. П. Бажова (5 класс)
Заправочные супы борщи
Corporate Social Responsibility
Операции на сосудах, нервах
Excel Что такое электронные таблицы
СУДЕБНАЯ РАБОТА С ДОЛЖНИКАМИ – ФИЗИЧЕСКИМИ ЛИЦАМИ
Заказ запчасти из-под сервисной заявки. Hot order - заказ на гарантию
Презентация на тему Человек родился
Гендина Н.И., доктор пед. наук, профессор КемГУКИ
Эволюция российского избирательного законодательства в аспекте равноправия основных участников выборов
Feasts