Содержание
- 2. Электроэнергетика в современном мире. Основные способы получения энергии. А) ТЭС Б) ГЭС В) АЭС Г) ВЭС
- 3. Научно-технический прогресс невозможен без развития энергетики, электрификации. Для повышения производительности труда первостепенное значение имеет механизация и
- 4. Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных
- 5. Российская энергетика сегодня - это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций
- 6. Тепловые электростанции. Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при
- 7. Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только
- 8. Гидроэлектростанции. Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в
- 9. По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с
- 10. Атомные электростанции. Атомная электростанция (АЭС) - электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором
- 11. Ветровая энергия Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем в сто раз превышают
- 12. Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока
- 13. Геотермальная энергия Энергетика земли – геотермальная энергетика базируется на использовании природной теплоты Земли. Верхняя часть земной
- 14. Тепловая энергия океана Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности
- 15. Энергия приливов и отливов. Самые высокие и сильные приливные волны возникают в мелких и узких заливах
- 16. Энергия морских течений Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать
- 17. Солнечная энергия. Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного дороже, чем получаемая традиционными способами.
- 18. Водородная энергетика Когда водород станет столь же доступным топливом, как сегодня природный газ, он сможет всюду
- 19. Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт энергии окислительно-восстановительных реакций химических реагентов.
- 20. В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические И. т. подразделяются
- 21. Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и
- 22. Электромашинные генераторы, преобразующие механическую энергию в электрическую, — наиболее распространённый вид источников электрической энергии, основа современной
- 23. 1. Получение электроэнергии из отходов шоколадной фабрики Британский микробиолог Линн Маккаски (Lynne Mackaskie) из университета Бирмингема
- 24. 2. Производство электроэнергии за счет использования сточных вод Исследователи из университета Пенсильвании (Pennsylvania State University) создали
- 25. 3. Получение электроэнергии из энергии солнца и звезд Российские ученые-ядерщики создали батарею, которая может трансформировать в
- 26. 4. Получение электроэнергии из воздуха Hitachi разработала новую технологию получения электроэнергии, используя естественно возникающие в воздухе
- 28. Скачать презентацию
Слайд 2Электроэнергетика в современном мире.
Основные способы получения энергии.
А) ТЭС
Б) ГЭС
В) АЭС
Г) ВЭС
Д) Геотермальная
Электроэнергетика в современном мире.
Основные способы получения энергии.
А) ТЭС
Б) ГЭС
В) АЭС
Г) ВЭС
Д) Геотермальная
Е) Тепловая энергия океана
Ж) Энергия приливов и отливов
З) Энергия морских течений
И) Солнечная энергия
К) Водородная энергетика
Источники электрического тока.
Слайд 3 Научно-технический прогресс невозможен без развития энергетики, электрификации. Для повышения производительности труда
Научно-технический прогресс невозможен без развития энергетики, электрификации. Для повышения производительности труда
Слайд 4 Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом.
Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом.
Слайд 5 Российская энергетика сегодня - это 600 тепловых, 100 гидравлических, 9 атомных
Российская энергетика сегодня - это 600 тепловых, 100 гидравлических, 9 атомных
Слайд 6 Тепловые электростанции.
Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате
Тепловые электростанции.
Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате
Около 75% всей электроэнергии России производится на тепловых электростанциях.
Основные способы получения энергии.
Слайд 7 Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ
Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ
На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).. Простейшая принципиальная схема КЭС, работающей на угле, представлена на рис. Уголь подается в топливный бункер 1, а из него — в дробильную установку 2, где превращается в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых циркулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насыщенный пар доводится до температуры 400—650°С и под давлением 3—24 МПа поступает по паропроводу в паровую турбину 4. Параметры пара зависят от мощности агрегатов.
Тепловые конденсационные электростанции имеют невысокий кпд (30— 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора.
Слайд 8 Гидроэлектростанции.
Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых
Гидроэлектростанции.
Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых
Слайд 9 По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют
По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют
В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.
В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м, к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций руслового типа.
При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительные водосбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.
Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — на территории бывшего Советского Союза.
Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные, удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств.
Слайд 10 Атомные электростанции.
Атомная электростанция (АЭС) - электростанция, в которой атомная
(ядерная) энергия
Атомные электростанции.
Атомная электростанция (АЭС) - электростанция, в которой атомная
(ядерная) энергия
Слайд 11 Ветровая энергия
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более
Ветровая энергия
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более
По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ГВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2.
Слайд 12Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не
Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не
Новейшие исследования направлены преимущественно на получение электрической энергии из энергии ветра. Стремление освоить производство ветроэнергетических машин привело к появлению на свет множества таких агрегатов. Некоторые из них достигают десятков метров в высоту, и, как полагают, со временем они могли бы образовать настоящую электрическую сеть. Малые ветроэлектрические агрегаты предназначены для снабжения электроэнергией отдельных домов.
Сооружаются ветроэлектрические станции преимущественно постоянного тока. Ветряное колесо приводит в движение динамо-машину – генератор электрического тока, который одновременно заряжает параллельно соединенные аккумуляторы. Аккумуляторная батарея автоматически подключается к генератору в тот момент, когда напряжение на его выходных клеммах становится больше, чем на клеммах батареи, и также автоматически отключается при противоположном соотношении.
В небольших масштабах ветроэлектрические станции нашли применение несколько десятилетий назад. Самая крупная из них мощностью 1250 кВт давала ток в сеть электроснабжения американского штата Вермонт непрерывно с 1941 по 1945 г. Однако после поломки ротора опыт прервался – ротор не стали ремонтировать, поскольку энергия от соседней тепловой электростанции обходилась дешевле. По экономическим причинам прекратилась эксплуатация ветроэлектрических станций и в европейских странах.
Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных районах, на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования. Американец Генри Клюз в штате Мэн построил две мачты и укрепил на них ветродвигатели с генераторами. 20 аккумулятором по 6 В и 60 по 2 В служат ему в безветренную погоду, а в качестве резерва он имеет бензиновый движок. За месяц Клюз получает от своих ветроэлектрических агрегатов 250 кВт·ч энергии; этого ему хватает для освещения всего хозяйства, питания бытовой аппаратуры (телевизора, проигрывателя, пылесоса, электрической пишущей машинки), а также для водяного насоса и хорошо оборудованной мастерской.
Широкому применению ветроэлектрических агрегатов в обычных условиях пока препятствует их высокая себестоимость. Вряд ли требуется говорить, что за ветер платить не нужно, однако машины, нужные для того, чтобы запрячь его в работу, обходятся слишком дорого.
Сейчас созданы самые разнообразные прототипы ветроэлектрических генераторов (точнее, ветродвигателей с электрогенераторами). Одни из них похожи на обычную детскую вертушку, другие – на велосипедное колесо с алюминиевыми лопастями вместо спиц. Существуют агрегаты в виде карусели или же в виде мачты с системой подвешенных друг над другом круговых ветроуловителей, с горизонтальной или вертикальной осью вращения, с двумя или пятьюдесятью лопастями.
В проектировании установки самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.
При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. Как же накапливать и сохранить впрок энергию ветра? Простейший способ состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроагрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности
Слайд 13 Геотермальная энергия
Энергетика земли – геотермальная энергетика базируется на использовании природной
Геотермальная энергия
Энергетика земли – геотермальная энергетика базируется на использовании природной
С геологической точки зрения геотермальные энергоресурсы можно разделить на гидротермальные конвективные системы, горячие сухие системы вулканического происхождения и системы с высоким тепловым потоком.
К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, которые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера. Образование таких систем связано с наличием источника теплоты - горячей или расплавленной скальной породой, расположенной относительно близко к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.
Слайд 14 Тепловая энергия океана
Известно, что запасы энергии в Мировом океане колоссальны,
Тепловая энергия океана
Известно, что запасы энергии в Мировом океане колоссальны,
Последние десятилетие характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (ОТЕС – начальные буквы английских слов Осеаn Тhеrmal Energy Conversion, т.e. преобразование тепловой энергии океана – речь идет о преобразовании в электрическую энергию). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная –53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее – на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты анергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.
Слайд 15 Энергия приливов и отливов.
Самые высокие и сильные приливные волны возникают
Энергия приливов и отливов.
Самые высокие и сильные приливные волны возникают
Для использования приливной энергии наиболее подходящими можно считать такие места на морском побережье, где приливы имеют большую амплитуду, а контур и рельеф берега позволяют устроить большие замкнутые «бассейны». Мощность электростанций в некоторых местах могла бы составить 2–20 МВт.
Первая морская приливная электростанция мощностью 635 кВт была построена в 1913 г. в бухте Ди около Ливерпуля. В 1935 г. приливную электростанцию начали строить в США. Американцы перегородили часть залива Пассамакводи на восточном побережье, истратили 7 млн. долл., но работы пришлось прекратить из-за неудобного для строительства, слишком глубокого и мягкого морского дна, а также из-за того, что построенная неподалеку крупная тепловая электростанция дала более дешевую энергию.
Слайд 16 Энергия морских течений
Неисчерпаемые запасы кинетической энергии морских течений, накопленные в
Энергия морских течений
Неисчерпаемые запасы кинетической энергии морских течений, накопленные в
Важнейшее и самое известное морское течение – Гольфстрим. Его основная часть проходит через Флоридский пролив между полуостровом Флорида и Багамскими островами. Ширина течения составляет 60 км, глубина до 800 м, а поперечное сечение 28 км2. Если бы мы смогли полностью использовать эту энергию, она была бы эквивалентна суммарной энергии от 50 крупных электростанций по 1000 МВт, Но эта цифра чисто теоретическая, а практически можно рассчитывать на использование лишь около 10% энергии течения.
В настоящее время в ряде стран, и в первую очередь в Англии, ведутся интенсивные работы по использованию энергии морских волн. Британские острова имеют очень длинную береговую линию, к во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому Центральному электроэнергетическому управлению.
Один из проектов использования морских волн основан на принципе колеблющегося водяного столба. В гигантских «коробах» без дна и с отверстиями вверху под влиянием волн уровень воды то поднимается, то опускается. Столб воды в коробе действует наподобие поршня: засасывает воздух и нагнетает его в лопатки турбин. Главную трудность здесь составляет согласование инерции рабочих колес турбин с количеством воздуха в коробах, так чтобы за счет инерции сохранялась постоянной скорость вращения турбинных валов в широком диапазоне условий на поверхности моря.
Слайд 17 Солнечная энергия.
Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного
Солнечная энергия.
Пока еще электрическая энергия, рожденная солнечными лучами, обходится намного
С 1988 года на Керченском полуострове работает Крымская солнечная электростанция. Кажется, самим здравым смыслом определено ее место. Уж если где и строить такие станции, так это в первую очередь в краю курортов, санаториев, домов отдыха, туристских маршрутов; в краю, где надо много энергии, но еще важнее сохранить в чистоте окружающую среду, само благополучие которой, и прежде всего чистота воздуха, целебно для человека. Крымская СЭС невелика – мощность всего 5 МВт. В определенном смысле она – проба сил. Хотя, казалось бы, чего еще надо пробовать, когда известен опыт строительства гелиостанций в других странах.
На острове Сицилия еще в начале 80-х годов дала ток солнечная электростанция мощностью 1 МВт. Принцип ее работы тоже башенный. Зеркала фокусируют солнечные лучи на приемнике, расположенном на 50-метровой высоте. Там вырабатывается пар с температурой более 600 °С, который приводит в действие традиционную турбину с подключенным к ней генератором тока. Неоспоримо доказано, что на таком принципе могут работать электростанции мощностью 10–20 МВт, а также и гораздо больше, если группировать подобные модули, подсоединяя их друг к другу. Несколько иного типа электростанция в Алькерии на юге Испании. Ее отличие в том, что сфокусированное на вершину башни солнечное тепло приводит в движение натриевый круговорот, а тот уже нагревает воду до образования пара. У такого варианта ряд преимуществ. Натриевый аккумулятор тепла обеспечивает не только непрерывную работу электростанции, но дает возможность частично накапливать избыточную энергию для работы в пасмурную погоду и ночью. Мощность испанской станции имеет всего 0,5 МВт. Но на ее принципе могут быть созданы куда более крупные – до 300 МВт. В установках этого типа концентрация солнечной анергии настолько высока, что КПД паротурбинного процесса здесь ничуть не хуже, чем на традиционных тепловых электростанциях. По мнению специалистов, наиболее привлекательной идеей относительно преобразования солнечной энергии является использование фотоэлектрического эффекта в полупроводниках.
Слайд 18 Водородная энергетика
Когда водород станет столь же доступным топливом, как
Водородная энергетика
Когда водород станет столь же доступным топливом, как
Водород может служить и химическим сырьем во многих отраслях промышленности, например при производстве удобрений и продуктов питания, в металлургии и нефтехимии. Его можно использовать и для выработки электроэнергии на местных тепловых электростанциях.
Слайд 19 Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт
Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт
Источники электрического тока
Слайд 20 В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую
В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую
Вторичные И. т. (отдельные аккумуляторы и аккумуляторные батареи) допускают многократное (сотни и тысячи заряд-разрядных циклов) использование энергии составляющих химических реагентов. Электроды и электролит весь срок службы аккумуляторов находятся в электрическом контакте друг с другом. Для увеличения ресурса аккумуляторов в некоторых специфических условиях эксплуатации разработаны способы сухозаряженного хранения аккумуляторов. Такие аккумуляторы перед включением предварительно заливают электролитом.
Резервные И. т. допускают только однократное использование энергии химических реагентов. В отличие от гальванических элементов и аккумуляторов, в резервных И. т. электролит при хранении никогда гальванически не связан с электродами. Он хранится в жидком состоянии (в стеклянных, пластмассовых или металлических ампулах) либо в твёрдом (но неэлектропроводном) состоянии в межэлектродных зазорах. При подготовке к работе резервных И. т. ампулы разрушают сжатым воздухом, взрывом, а кристаллы твёрдого электролита расплавляют с помощью электрического или пиротехнического разогрева. Резервные И. т. применяют для питания электрической аппаратуры, которая долгое время может (вынуждена) находиться в резервном (неработающем) состоянии. Срок хранения современных резервных И. т. превышает 10—15 лет.
Электрохимические генераторы (топливные элементы) представляют собой разновидность химических И. т. Электрохимические генераторы способны длительное время непрерывно генерировать электрический ток в результате преобразования энергии химических реагентов (газообразных или жидких), поступающих в генератор извне.
К 1970 в США и СССР были созданы промышленные образцы электрохимических генераторов. Ведутся интенсивные работы по созданию электрохимических генераторов для космических объектов, электромобилей, стационарных установок и т. д. Разрабатываются разновидности электрохимических генераторов (высоко-, средне- и низкотемпературные, на газообразных, жидких и твёрдых реагентах и т. д.), из которых наиболее перспективны генераторы, непосредственно преобразующие энергию природного топлива в электрическую.
Слайд 21 Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а
Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а
Слайд 22 Электромашинные генераторы, преобразующие механическую энергию в электрическую, — наиболее распространённый вид
Электромашинные генераторы, преобразующие механическую энергию в электрическую, — наиболее распространённый вид
Работа термоэлектрического генератора (ТЭГ) основана на использовании Зеебека эффекта Работа термоэлектрического генератора (ТЭГ) основана на использовании Зеебека эффекта. Рабочим материалом в ТЭГ служат различные полупроводниковые соединения кремния, германия и т. п. (как правило, твёрдые растворы). Кпд ТЭГ от 3 до 15% в диапазоне температур от 100 до 1000°C. Исследования ТЭГ ведутся в СССР, США, Франции и др. Области возможного применения ТЭГ: автономные источники питания (на транспорте, в технике связи, медицине), антикоррозионная защита (на магистральных трубопроводах) и др. (см. Термоэлектрический генератор).
Принцип работы термоэмиссионного преобразователя (ТЭП) основан на использовании термоэмиссионного эффекта (испускание электронов поверхностью нагретого металла). Термоэмиссионный поток электронов зависит главным образом от температуры и свойств поверхности материала. Кпд отдельных лабораторных образцов ТЭП достигает 30%, а действующих энергетических установок 15% (при электрической мощности, снимаемой с единицы поверхности катода, — 30 вт/см2). Наиболее перспективно применение ТЭП в качестве автономных источников электроэнергии большой мощности (до 100 квт).
Слайд 231. Получение электроэнергии из отходов шоколадной фабрики
Британский микробиолог Линн Маккаски (Lynne
1. Получение электроэнергии из отходов шоколадной фабрики
Британский микробиолог Линн Маккаски (Lynne
Линн скармливала бактериям Escherichia coli раствор нуги и карамели из фабричных отходов. Бактерии расщепляли сахар и производили водород. Водород тут же направлялся в топливный элемент, который вырабатывал достаточно электроэнергии для небольшого вентилятора.
Также Маккаски продемонстрировала другую замечательную работу тех же самых крошечных помощников.
На этот раз бактерии поместили в раствор отходов с линии по переработке старых автомобильных нейтрализаторов. Тот же фермент гидрогеназа, что участвовал в выработке водорода, здесь вступал в реакцию с веществами в растворе и, в конечном счёте, помогал микробам вывести из него растворённый палладий, который закреплялся на поверхности бактерий.
Эти бактерии, говорит исследовательница, легко собрать и со своим палладиевым "одеянием" направить на новую работу — в роли катализаторов для каких-то иных химических производств.
10 самых необычных способов
получения электроэнергии
Слайд 242. Производство электроэнергии за счет использования сточных вод
Исследователи из университета Пенсильвании
2. Производство электроэнергии за счет использования сточных вод
Исследователи из университета Пенсильвании
Здесь в дело пущены бактерии, которые имеются в обычных сточных водах. Эти бактерии поедают органику, выделяя углекислый газ. При этом в химических реакциях происходит переход электронов между атомами. Учёные сумели вклиниться в этот процесс и заставить бежать эти электроны в обход — по внешней цепи.
Для этого авторы агрегата применили пластмассовую трубу, диаметром 6,5 см и длиной 15 см, в которой разместили восемь периферийных стержней-электродов из графита и один центральный электрод, выполненный из пластика, графита и платины.
Когда через эту трубку прокачивали нечистоты, в цепи между центральным и периферийными стержнями идёт ток. Правда, мощность составляет лишь несколько милливатт. Но Брюс Логан (Bruce Logan), один из авторов проекта, говорит, что команда работает над повышением мощности.
Возможно, унитазы-электростанции смогут питать одну-две лампочки, экономя энергию. К тому же, широкое внедрение новинки способствовало бы дополнительной очистке сточных вод.
Испытательный центр армии США (Natick Soldier Systems Center Испытательный центр армии США (Natick Soldier Systems Center) проверяет новую продукцию компании Iowa Thin Film Technologies — палатки для солдат, вырабатывающие электроэнергию из солнечного света.
Слайд 25 3. Получение электроэнергии из энергии солнца и звезд
Российские ученые-ядерщики создали
3. Получение электроэнергии из энергии солнца и звезд
Российские ученые-ядерщики создали
"Это уникальная батарея, не имеющая аналогов в мире, может работать 24 часа в сутки", — рассказал директор центра Валентин Самойлов. По его словам, «ученым удалось создать новое вещество — гетероэлектрик, благодаря которому батарея может работать на Земле на энергии солнца и звезд, независимо от погодных условий». Разработка уже доказала свою высокую эффективность как в темное, так и в облачное время суток, отметил ученый, передает ИТАР-ТАСС.
По словам Самойлова, «звездная батарея», как ее окрестили разработчики, в несколько раз эффективнее обычной солнечной. «Эффективность преобразования света в электрический ток у демонстрационного образца в видимой области — более чем в 2 раза выше, а в инфракрасной области — в 1,5 раза», — подчеркнул он. Самойлов отметил, что «себестоимость гетероэлектрического фотоэлемента ниже, чем у фотоэлемента обычной солнечной батареи».
Слайд 264. Получение электроэнергии из воздуха
Hitachi разработала новую технологию получения электроэнергии,
4. Получение электроэнергии из воздуха
Hitachi разработала новую технологию получения электроэнергии,
Технология основывается на теории, что электричество может вырабатываться, при вибрации изменяется расстояние между электродом, закрепленном на плоской пружине, и неподвижным электродом.
Для подтверждения своей теории разработчики создали устройство размером 2,5х7 см, вырабатывающее ток мощностью 0,12 микроватт при возникновении колебаний в несколько микрометров, которые можно обнаружить даже в почти неподвижном воздухе здания. Такой мощности вполне достаточно для работы температурного или светового датчика раз в час, либо отправки данных, замеренных датчиком, в другое место.
По мнению разработчиков, технологию можно использовать, например, в датчиках для определения усталости здания или износа деталей механизмов. В Hitachi планируют расширить круг приложений своего открытия, уменьшив размеры прибора до 1х1 см и увеличив мощность вырабатываемого тока.