Содержание
- 2. Цели и задачи: Дать понятие правильных многогранников ( на основе определения многогранников). Доказать почему существует только
- 3. Существует пять типов правильных многогранников тетраэдр октаэдр икосаэдр гексаэдр додекаэдр
- 4. Определение многогранника: Многогранник – это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединённых таким образом,
- 5. Правильным называется многогранник, у которого все грани являются правильными многоугольниками, и все многогранные углы при вершинах
- 6. В каждой вершине многогранника должно сходиться столько правильных n – угольников, чтобы сумма их углов была
- 7. Правильный многогранник, у которого грани правильные треугольники и в каждой вершине сходится по три ребра и
- 8. ОКТАЭДР Правильный многогранник, у которого грани- правильные треугольники и в каждой вершине сходится по четыре ребра
- 9. ИКОСОЭДР Правильный многогранник, у которого грани - правильные треугольники и в вершине сходится по пять рёбер
- 10. КУБ -правильный многогранник, у которого грани – квадраты и в каждой вершине сходится по три ребра
- 11. Додекаэдр Правильный многогранник, у которого грани правильные пятиугольники и в каждой вершине сходится по три ребра
- 12. Элементы симметрии правильных многогранников
- 14. Немного истории Все типы правильных многогранников были известны в Древней Греции – именно им посвящена завершающая,
- 15. Правильные многогранники называют также «платоновыми телами» - они занимали видное место в идеалистической картине мира древнегреческого
- 16. Олицетворение многогранников.
- 17. Дюрер. Меланхолия
- 18. Тайна мировоззрения.
- 19. Выводы: Многогранник называется правильным, если: Он выпуклый; Все его грани равные правильные многоугольники; В каждой вершине
- 20. Евклид ЕВКЛИД, или ЭВКЛИД - древнегреческий математик, автор первых дошедших до нас теоретических трактатов по математике.
- 21. Платон Платон (Platon) (род. 427 - ум. 347 гг.до н.э.) - греческий философ. Родился в Афинах.
- 22. Определение правильного многоугольника Многоугольник называется правильным, если у него все стороны и все углы равны.
- 23. Построение с помощью куба
- 24. Закон взаимности
- 25. Звездчатые правильные многогранники
- 26. С1 В1 А Построение правильного тетраэдра вписанного в куб Рассмотрим вершину куба А. В ней сходятся
- 27. Построение правильного тетраэдра
- 28. Построение правильного октаэдра, вписанного в данный куб Выбираем куб. В нем последовательно проводим отрезки: слабо видимыми
- 29. Описать около данного куба правильный октаэдр Через центры противоположных граней куба проведем прямые, которые пересекаются в
- 30. Построение икосаэдра, вписанного в куб Поместим на средних линиях граней куба по одному отрезку одинаковой длины
- 32. Скачать презентацию





























Универсальный фиксатор шва
Тема
Поиграем??
Экономическое учение Адама Смита
Папа,мама, я, спортивная семья
МЕЖДУНАРОДНАЯ ЭКОНОМИЧЕСКАЯ ИНТЕГРАЦИЯ
Благотворительная
Задачи на движение
Описание областей влияния базисных вейвлет-функций при помощи ИТ и построение решения задачи Дирихле для некоторых специальных о
ПРАВОВАЯ БЕЗОПАСНОСТЬ ВАШЕГО БИЗНЕСА
Дизайн сада
Презентация на тему Главные типы почв России (8 класс)
Создание сайта для музея школы
Презентация на тему Биотопы суши
HISTORY OF THEATRE
CBD Wednesday
БОРТОВАЯ АНАЛИТИЧЕСКАЯ СИСТЕМА УПРАВЛЕНИЯ РИСКАМИ ПОЛЕТА САМОЛЕТА
Христофор колумб
История развития авиации в России
Презентация на тему Поиск жизни во вселенной
"Здоровое питание"
Системный подход
Презентация на тему Человек и земная кора
Переходная характеристика. Импульсная характеристика. ЛЧХ
Инкассовые распоряжения
Глобальная компьютерная сетьинтернет
Федеральный закон № 185 – ФЗ«О Фонде содействия реформированию жилищно-коммунального хозяйства»
Панели 3D МДФ ТМ STELLA