а и а1 лежат в одной плоскости.
а1
а
x
z
y
L
K
A
B
M
N
Дано: f(α)- зерк.симметрия
Док-ть: а1,а принадл. α
Док-во: пусть а ║ Oxy. Точки M и L, N и K симметр. MA=AL,NB=BK. Если а ║ Oxy, то
MA=AL=NB=BK. Т.к. две прямые, перпенд. плоскости, между собой ║,то ML ║NK.
ML=NK и MNKL – прямоугольник, => LK ║ MN
Или а ║а1. А ║ прямые лежат в одной плоскости.
Если а ║ Oxy,то она ∩ ее в т. P. При симметрии т. P переходит в себя(т.к. она лежит а пл. Oxy. Значит,p принадлежит
а1. Т.е. прямые а и а1 имеют общ.точку и лежат в одной плоскости.