Производная в технике, физике, химии, экономике. . .»

Содержание

Слайд 2

Скажи мне, и я забуду. Покажи мне, и я запомню. Дай мне

Скажи мне, и я забуду. Покажи мне, и я запомню. Дай мне
действовать самому, И я научусь Конфуций

«…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…»
Н.И. Лобачевский

Производная в технике, физике, химии, экономике. . .»

Слайд 3

ЦЕЛИ УРОКА:
∙ добиться усвоения учащимися систематических, осознанных сведений о понятии производной, её

ЦЕЛИ УРОКА: ∙ добиться усвоения учащимися систематических, осознанных сведений о понятии производной,
геометрическом и физическом смысле;
∙ формировать навыки практического использования производной в предметах школьного курса, показать применение производной при решении жизненно важных задач;
∙ развивать познавательный интерес у учащихся
через раскрытие практической необходимости и
теоретический значимости темы и использование возможностей ЭВМ в изучении темы;
∙ формировать у учащихся понятие о научной организации труда с помощью ЭВМ;

Слайд 4

Кроссворд
" Мысли в фокус"

Кроссворд " Мысли в фокус"

Слайд 5

Блиц-опрос

1. Какая программа используется для организации работы кроссворда?

Электронная таблица (Excel)– это

Блиц-опрос 1. Какая программа используется для организации работы кроссворда? Электронная таблица (Excel)–
работающее в диалоговом режиме приложение, хранящее и обрабатывающее данные в прямоугольных таблицах

2. Сформулировать правила записи формул в Excel

Формула начинается со знака равенства и включает в себя имена ячеек, числа, функции и знаки математических операций. В формулу не может входить текст.


3. Определить тип ссылок, используемых при создании кроссворда.

Относительные ссылки

Слайд 6

Какой результат будет вычислен в ячейке С2 после копирования в неё формулы

Какой результат будет вычислен в ячейке С2 после копирования в неё формулы
из ячейки С1 ?

1) 75 2) 150 3) 50 4) 0

Слайд 7

Блиц-опрос

Что называется производной функции в точке?
Ответ: производной функции у =

Блиц-опрос Что называется производной функции в точке? Ответ: производной функции у =
f(x) в точке х0 называется предел отношения приращения функции в точке х0 к приращению аргумента, когда последнее стремится к нулю.
В чем заключается геометрический смысл производной?
Ответ: значение производной f '(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).
k = tgα = f '(x0).
В чем заключается механический смысл производной?
Ответ: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0
x'(t). = ν(t)

Слайд 8

Укажите функцию, производная которой в точке а равна 1.

Укажите функцию, производная которой в точке а равна 1.

Слайд 9

36.

35.
ex

34.

33.
ctgx

32.
lnx

31.
cos x

30.

29.
arctg x

28.

27.
0

26.

25.
arcctg x

24.
- sin

36. 35. ex 34. 33. ctgx 32. lnx 31. cos x 30.
x

23.
logax

22.
nxn-1

21.

20.

19.
1

18.
arccos x

17.

16.
cos x

15.
lgx

14.
tg x

13.
xn

12.
axlna

11.

10.
sin x

9.
аx

8.
arcsin x

7.
еx

6.

5.

4.

3.
x

2.

1.
С

Слайд 10

Домашнее задание

Работа с информацией на электронных носителях
Найти в Интернете сайты по теме

Домашнее задание Работа с информацией на электронных носителях Найти в Интернете сайты
«Производная в физике, технике, химии, экономике…» и составить на каждый рецензию».
Работа с информацией на печатных носителях
Подготовить формулы из физики и экономики, химии…, где используется производная.

Слайд 11

Программа решения задачи на языке Паскаль

Program shar;
Const P=3.14;
Var R, S :

Программа решения задачи на языке Паскаль Program shar; Const P=3.14; Var R,
real;
Begin
Writeln ( ‘ ввести R ’ );
Readln ( R );
S = 4 * P * R * R;
Writeln( ‘ Площадь S= ’ , S );
Readln;
End.

Слайд 12

υ(t) = х ′ (t) – скорость
a (t)=υ′ (t) - ускорение
J (t)

υ(t) = х ′ (t) – скорость a (t)=υ′ (t) - ускорение
= q′ (t) - сила тока
C(t) = Q′ (t) - теплоемкость
d(l)=m′ (l) - линейная плотность
K (t) = l/′ (t) - коэффициент линейного расширения
ω (t)= φ′ (t) - угловая скорость
а (t)= ω′ (t) - угловое ускорение
N(t) = A′ (t) - мощность
П (t) = υ′ (t) - производительность труда,
где υ (t) - объем продукции
J(x) = y′ (x) - предельные издержки производства, где y– издержки производства в зависимости от объема выпускаемой продукции x.

Слайд 13

Исторические сведения

Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия

Исторические сведения Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17
на основе двух задач:
1) о разыскании касательной к произвольной линии
2) о разыскании скорости при произвольном законе движения
Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.
В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.

Слайд 14

Г. Лейбниц

И. Ньютон 

Р. Декарт

Г.Галилей

Ж. Лагранж

Л. Эйлер

Г. Лейбниц И. Ньютон Р. Декарт Г.Галилей Ж. Лагранж Л. Эйлер

Слайд 15

1. Пусть Q (t) количество теплоты, которое необходимо для нагревания тела массой

1. Пусть Q (t) количество теплоты, которое необходимо для нагревания тела массой
1 кг от 00С до температуры t0 (по Цельсию), известно, что в диапазоне 00 <= t <= 950, формула
Q (t) = 0,396 t + 2,081⋅10-3 t2 - 5,024⋅10-7 t3
дает хорошее приближение к истинному значению. Найдите, как зависит теплоёмкость воды от t.

C (t) = Q′(t) = 0,396 + 4,162⋅10 -3 t – 15,072⋅10 -7 t2

Слайд 16

Пароход “Челюскин” в феврале 1934 года успешно прошел весь северный морской путь,

Пароход “Челюскин” в феврале 1934 года успешно прошел весь северный морской путь,
но в Беринговом проливе оказался зажатым во льдах. Льды унесли “Челюскин” на север и раздавили.

Почему произошла катастрофа?

Сила Р давления льда разлагается на две: F и R. R – перпендикулярна к борту, F – направлена по касательной. Угол между P и R – a – угол наклона борта к вертикали.
Q – сила трения льда о борт.
Q = 0,2 R (0,2 – коэффициент трения).
Если Q < F, то F увлекает напирающий лед под воду, лед не причиняет вреда, если Q > F, то трение мешает скольжению льдины, и лед может смять и продавить борт.
0,2R < R tg α , tg α > 0,2
Q < F, если α > 110.
Наклон бортов корабля к вертикали под углом α > 110 обеспечивает безопасное плавание во льдах.

Слайд 17

Выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:

Выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:
π(q) = R(q) - C(q) = q2 - 8q + 10

Решение:
π'(q) = R'(q) - C'(q) = 2q - 8 = 0 → qextr = 4
При q < qextr = 4 → π'(q) < 0 и прибыль убывает
При q > qextr = 4 → π'(q) > 0 и прибыль возрастает
При q = 4 прибыль принимает минимальное значение.
Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.

Слайд 19

Индивидуальная работа на ПК по
программе «1С Репетитор»
7 учащихся

Индивидуальная работа на ПК по программе «1С Репетитор» 7 учащихся
Имя файла: Производная-в-технике,-физике,-химии,-экономике.-.-.».pptx
Количество просмотров: 248
Количество скачиваний: 1