Слайд 2Обоснование выбора темы:
Для газификации жилого дома требуется проложить газопровод протяженностью 150 м.

Имеются трубы 13 м и 9м длиной. Сколько требуется труб, чтобы не приходилось их разрезать при прокладке газопровода.
Слайд 3Обоснование выбора темы:
Надо разлить 1500 т. нефти в цистерны емкостью в 50

т. и 80 т. так, чтобы все использованные цистерны были полными. Сколько цистерн той или другой емкости потребуется?
Слайд 4Обоснование выбора темы:
Евгений работает летом в кафе «Баскин Робинс». За каждый час

ему платят 10 р. И высчитывают 2 р. за каждую разбитую тарелку. На прошедшей неделе он заработал 180 р. Определите, сколько часов он работал и сколько разбил тарелок, если известно, что он работает не более 3 ч в день.
Слайд 5Обоснование выбора темы:
Школа получила 1 млн. руб. на приобретение учебного оборудования (на

всю сумму без остатка). Администрации школы предложили, оборудование стоимостью 3000, 8000 и 12000 руб. за единицу. Сколькими способами школа может закупить это оборудование? Выбрать один из способов.
Слайд 6Гипотеза
Мы предполагаем, что существуют способы решения уравнений с двумя переменными, которые позволяют

решить многие прикладные задачи экономического содержания эффективно и экономично даже населению, не имеющему специальной математической подготовки.
Слайд 7 Цели :
Научиться самим и научить других решать диофантовы уравнения эффективными методами.
2.

Применить эти методы решения к задачам из жизни человека, а также к задачам, предлагаемым на вступительных экзаменах в ВУЗы и в олимпиадных заданиях.
3. Распространить информацию через:
- составление сборника задач с решениями в помощь всем интересующимся людям, учителям и школьникам;
- публикацию методических рекомендаций на сайте школы.
Слайд 8Задачи :
- исследовать методы решения задач, приводимых к уравнениям первой степени

с двумя переменными, выбрав самые удобные и простые;
-решить задачи из жизни, вступительных экзаменов в ВУЗы экономического направления и олимпиадных заданий, применив изученные методы.
- разработать методическое пособие для всех интересующихся (подобрать или самим составить задачи с экономическим содержанием, приводящие к решению уравнений
с двумя переменными).
Слайд 9Этапы и организация работы:
Изучение литературы по данному вопросу.
Изучение способов решения диофантовых уравнений.
Подборка

задач экономического содержания, в том числе задач со вступительных экзаменов в ВУЗы и из жизни человека.
Решение подобранных задач при помощи уравнений с двумя переменными разными способами. Поиск наиболее оптимальных их решений.
Оформление работы.
Создание сборника задач в помощь учителям, школьникам и широкому кругу населения.
Слайд 10Объектом работы является теория решения диофантовых уравнений первой степени.
Предмет исследования: способы решения

диофантовых уравнений.
Слайд 11Методы исследования:
Поиск, изучение и обобщение теоретического материала при чтении научной литературы
Изучение

статей в журналах
Поиск информации в сети Интернет
Подбор и решение экономических задач из окружающей жизни.
Слайд 12Основные выводы:
наиболее удобные способы: при помощи алгоритма Евклида и при помощи компьютера.
Составлен

сборник задач экономического содержания для всех интересующихся.Он поможет в решении экономических задач.
Слайд 13Практическая значимость работы:
Помощь школьникам при подготовке к поступлению в ВУЗы.
Помощь учителям в

организации внеклассной, факультативной работы с обучающимися.
Применение в экономике для решения практических хозяйственных задач.
Создание сборника задач с решениями для практического использования.
Слайд 14Способы решения диофантовых уравнений:
Способ перебора вариантов.
Решение диофантовых уравнений с использованием алгоритма Евклида
Способ

цепной дроби
Метод рассеивания (измельчения)
При помощи компьютера на языке программирования Паскаль.
Слайд 15Решим задачу :
Андрей работает летом в кафе. За каждый час ему платят

10 р. И высчитывают 2 р. за каждую разбитую тарелку. На прошедшей неделе он заработал 180 р. Определите, сколько часов он работал и сколько разбил тарелок, если известно, что он работает не более 3 ч в день.
Пусть x часов он всего работал в неделю,
тогда 10х р. ему заплатили,
но он разбил у тарелок, и с него вычли 2у р.
Имеем уравнение 10х – 2у =180, причем x ≤21. Получим: 5х-у=90, 5х=90+у, х=18+у/5 .
Слайд 16х=18+у/5 .
Так как x - целое число, то у должно нацело делится

на 5, чтобы в правой части получилось целое число. Возможны четыре случаи:
у=0, х=18, т. е. решением является пара – (18, 0);
у=5, х=19, (19, 5);
у=10, х=20, (20, 10);
у=15, х=21, (21, 15).
Слайд 17С использованием алгоритма Евклида
Для газификации жилого дома требуется проложить газопровод протяженностью 150

м. Имеются трубы 13 м и 9м длиной. Сколько требуется труб, чтобы не приходилось их разрезать при прокладке газопровода.
Пусть требуется x труб по 9 м, и у труб по 13м. Составим и решим уравнение: 9х+13у=150.
НОД(9;13)=1, уравнение разрешимо во множестве целых чисел.
Слайд 18Применим алгоритм Евклида к числам 13 и 9:
4= 13 - 9∙1
1= 9

- 4∙2
Слайд 19Запишем общее решение уравнения согласно формулам
x = cx0 + bt, y =

cy0 – at.
Слайд 21Ответ.
Для прокладывания газопровода потребуется 8 труб длиной по 9м и 6

труб длиной по 13м.