Стратегия игр

Содержание

Слайд 2

Теория игр - раздел математики
исследующий вопросы поведения участников игры
разрабатывающий оптимальные

Теория игр - раздел математики исследующий вопросы поведения участников игры разрабатывающий оптимальные
стратегии поведения каждого из участников игры

Слайд 3

Простейшие математические игры - это

задачи, в которых нужно найти выигрышную стратегию
либо одно

Простейшие математические игры - это задачи, в которых нужно найти выигрышную стратегию
положение перевести в другое.

Слайд 4

Что такое игровая, стратегическая задача?

в ней часто нет ничего числового
иногда

Что такое игровая, стратегическая задача? в ней часто нет ничего числового иногда
в играх нельзя придумать алгоритм победы , в игре возможна победа и без стратегии, а также ничья

Слайд 5

Цель работы:

изучить новые методы решения нестандартных задач,
попробовать вывести «правила» решения некоторых

Цель работы: изучить новые методы решения нестандартных задач, попробовать вывести «правила» решения
игровых задач,
расширить свои знания по математике.

Слайд 6

Методы решения игровых задач

Инвариант
Стратегия - четность
Раскраска
Стратегия - чередование

Методы решения игровых задач Инвариант Стратегия - четность Раскраска Стратегия - чередование
состояний
Симметрия
Стратегия - повтор ходов противника

Слайд 7

Виды игровых задач по способам решений

Игры-шутки.
Игры, использующие симметрию.
Игры, в которых стратегия —

Виды игровых задач по способам решений Игры-шутки. Игры, использующие симметрию. Игры, в
дополнение до фиксированного числа.
Игры, использующие метод выигрышных позиций

Слайд 8

1. Игры-шутки.

Двое по очереди ломают шоколадку 5x8. За ход можно разломать любой

1. Игры-шутки. Двое по очереди ломают шоколадку 5x8. За ход можно разломать
кусок по прямой линии между дольками. Проигрывает тот, кто не может сделать ход. Кто выиграет при правильной игре?
Если число кусочков шоколадки четно, тогда побеждает первый, если число нечетно, тогда второй.

Слайд 9

2. Симметрия (осевая).

Двое по очереди ставят слонов в клетки шахматной доски

2. Симметрия (осевая). Двое по очереди ставят слонов в клетки шахматной доски
8x8 так, чтобы слоны не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?

Слайд 10

Задача 2.

Двое играют, поочередно выставляя крестики и нолики на квадратном поле 9х9.

Задача 2. Двое играют, поочередно выставляя крестики и нолики на квадратном поле
В конце каждый получает очко за каждую строку и столбец, в которых его знаков больше. Сможет ли первый игрок выиграть?

Слайд 11

Стратегия – центральная симметрия

Стратегия – центральная симметрия

Слайд 12

3. Игры, в которых стратегия — дополнение до фиксированного числа.

Двое играют в

3. Игры, в которых стратегия — дополнение до фиксированного числа. Двое играют
игру. Ходы, которые делаются по очереди, заключаются в том, что из кучки в 50 камней убирается любое число камней от 1 до 5. Выигрывает тот, кто возьмет последний камень. Кто выиграет в данной игре?

Слайд 13

Метод малых задач

Меньше 5 камней – выигрыш 1
6 камней – выигрыш 2
7

Метод малых задач Меньше 5 камней – выигрыш 1 6 камней –
камней – выигрыш 1
8 камней – выигрыш 1
12 камней – выигрыш 2
Если делится на 6 – выигрыш 2
если нет – выигрыш 1

Слайд 14

Стратегия игры

Может выиграть 1, если он возьмет:
2 камня, оставляя 48 камней (1

Стратегия игры Может выиграть 1, если он возьмет: 2 камня, оставляя 48
ход)
Каждый следующий ход соперника он должен дополнить до 6 камней.
Выиграет – начинающий.

Слайд 15

4. Вспомогательные раскраски в шахматном порядке.

Доску размером 10х10 клеток разрезать на фигурки

4. Вспомогательные раскраски в шахматном порядке. Доску размером 10х10 клеток разрезать на
в форме буквы Т, состоящие из четырех клеток.

Слайд 16

Метод – раскраска Стратегия - четность

Каждая фигурка содержит либо 1, либо 3 черные

Метод – раскраска Стратегия - четность Каждая фигурка содержит либо 1, либо
клетки, т.е. всегда нечетное число. Самих фигурок должно быть 100/4=25 штук. Поэтому они содержат нечетное число черных клеток, а всего черных клеток 100/2=50 штук. Получено противоречие.

Слайд 17

Выводы:

игровые задачи являются одним из самых мощных инструментов развития человеческого интеллекта,
эти

Выводы: игровые задачи являются одним из самых мощных инструментов развития человеческого интеллекта,
задачи проверяют не знания, а умение логически рассуждать, ориентироваться в необычных ситуациях, предвидеть и действовать.

Слайд 18

Известный русский математик В.П. Ермаков говорил: «В математике следует помнить не формулы,

Известный русский математик В.П. Ермаков говорил: «В математике следует помнить не формулы,
а процесс мышления ». Это демонстрируют задачи с играми.
Имя файла: Стратегия-игр.pptx
Количество просмотров: 1382
Количество скачиваний: 25