Вероятностное представление и томография спиновых состояний

Содержание

Слайд 2

План доклада

Что такое и для чего нужна томография квантовых состояний?
Варианты решения проблемы

План доклада Что такое и для чего нужна томография квантовых состояний? Варианты
реконструкции.
Вероятностное представление спиновых состояний.
Применения вероятностного представления

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 3

Как описать состояние спина?

Спин j, собственные векторы операторов и
Чистые состояния:
Смешанные состояния

Секция «Теоретическая

Как описать состояние спина? Спин j, собственные векторы операторов и Чистые состояния:
и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 4

Как восстановить оператор плотности, используя результаты наблюдений?

Наблюдаемая А, среднее значение - измеримо
Пример:

Как восстановить оператор плотности, используя результаты наблюдений? Наблюдаемая А, среднее значение -
проекторы
Матрица плотности в базисе векторов

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 5

Томография состояния спина

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Томография состояния спина Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 6

Опыт Штерна-Герлаха (1922)

Вероятность

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010

Опыт Штерна-Герлаха (1922) Вероятность Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.
г.

Слайд 7

Предельный случай бесконечного числа направлений n – интегрирование по сфере
V. V. Dodonov

Предельный случай бесконечного числа направлений n – интегрирование по сфере V. V.
and V. I. Man'ko, Phys. Lett. A, 229, 335 (1997).
V. I. Man'ko and O. V. Man'ko, J. Exp. Theor. Phys., 85, 430 (1997).

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 8

Нахождение матрицы плотности с помощью псевдообратной матрицы

Секция «Теоретическая и математическая физика», Долгопрудный,

Нахождение матрицы плотности с помощью псевдообратной матрицы Секция «Теоретическая и математическая физика»,
7 июля 2010 г.

Слайд 9

R.G. Newton and B. Young, “Measurability of the Spin Density Matrix,” Annals

R.G. Newton and B. Young, “Measurability of the Spin Density Matrix,” Annals
of Physics, 49, 393 (1968)
N=(4j+1) направления n
~ Experiment: G. Klose, G. Smith, and
P. S. Jessen, Phys. Rev. Lett., 86, 4721 (2001)

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 10

J.-P. Amiet and S. Weigert, J. Phys. A: Math. Gen., 32, L269

J.-P. Amiet and S. Weigert, J. Phys. A: Math. Gen., 32, L269
(1999)
Использование (2j+1)² спин-1/2 портретов вида

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 11

Спиновая томограмма с конечным числом «вращений»

Спин j, число направлений = 4j+1
Вероятностное представление
Реконструкция
«Квантайзер»

S.

Спиновая томограмма с конечным числом «вращений» Спин j, число направлений = 4j+1
N. Filippov and V. I. Man'ko, “Inverse spin-s portrait and representation of qudit states by single probability vectors,” J. Russ. Laser Res., 31, 32 (2010)

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 12

Математический аппарат
Задача на операторы
матрица Грама

?

Секция «Теоретическая и математическая физика», Долгопрудный, 7

Математический аппарат Задача на операторы матрица Грама ? Секция «Теоретическая и математическая
июля 2010 г.

Слайд 13

Кубит (спин 1/2)

Вероятностное представление
Реконструкция

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010

Кубит (спин 1/2) Вероятностное представление Реконструкция Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.
г.

Слайд 14

Уравнение эволюции томограмм

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Уравнение эволюции томограмм Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Слайд 15

Диаграмма направленности распада мюона и томограмма кубитов

Секция «Теоретическая и математическая физика», Долгопрудный,

Диаграмма направленности распада мюона и томограмма кубитов Секция «Теоретическая и математическая физика»,
7 июля 2010 г.

Слайд 16

Диаграмма направленности распада мюона и томограмма кубитов

Секция «Теоретическая и математическая физика», Долгопрудный,

Диаграмма направленности распада мюона и томограмма кубитов Секция «Теоретическая и математическая физика»,
7 июля 2010 г.

Слайд 17

Выводы

Рассмотрены варианты решения задачи реконструкции квантового состояния и предложен новый метод, основанный

Выводы Рассмотрены варианты решения задачи реконструкции квантового состояния и предложен новый метод,
на конечном числе вращений.
Вероятностное томографическое представление применено к спиновым состояниям.
Обозначены возможные применения.

Секция «Теоретическая и математическая физика», Долгопрудный, 7 июля 2010 г.

Имя файла: Вероятностное-представление-и-томография-спиновых-состояний.pptx
Количество просмотров: 121
Количество скачиваний: 0