Законы движения планет

Содержание

Слайд 2


В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл

В конце XVI в. датский астроном И. Кеплер, изучая движение планет, открыл
три закона их движения. И. Ньютон вывел формулу для закона всемирного тяготения. Он получил три обобщенных закона Кеплера.

Слайд 3

Первый закон Кеплера.
Под действием силы притяжения одно небесное тело движется в поле

Первый закон Кеплера. Под действием силы притяжения одно небесное тело движется в
тяготения другого небесного тела по одному из конических сечений-кругу, эллипсу, параболе или гиперболе. Ближайшая к Солнцу точка орбиты называется перигелием,самая далекая-афелием. Линия,соединяющая какую-либо точку эллипса с фокусом,называется радиус-вектором. Отношение расстояния между фокусами к большой оси (к наибольшему диаметру) называется эксцентриситетом е.

Слайд 4

Второй закон Кеплера.

Каждая планета движется так, что радиус-вектор планеты за равные

Второй закон Кеплера. Каждая планета движется так, что радиус-вектор планеты за равные
промежутки времени описывает равные площади.
Планета движется быстрее всего в перигелии, а медленнее всего-когда находится на наибольшем удалении(в афелии). Таким образом, второй закон Кеплера определяет скорость движения планеты.

Слайд 5

Третий закон Кеплера.

Куб большой полуоси орбиты тела, деленный на квадрат периода его

Третий закон Кеплера. Куб большой полуоси орбиты тела, деленный на квадрат периода
обращения и на сумму масс тел, есть величина постоянная.
а^3/[T^2(M1+M2)]=G/4П^2
где, Т-период обращения одного тела вокруг другого тела на среднем расстоянии а.
Третий обобщенный закон Кеплера позволяет определять массы планет по движению их спутников, а масса двойных звезд-по элементам их орбит.

Слайд 6

Пример решения задачи

Определите массу Юпитера по движению его спутника Ио ,если спутник

Пример решения задачи Определите массу Юпитера по движению его спутника Ио ,если
обращается Юпитера по круговой орбите на расстоянии а=422*10^3 км, с периодом Т=1,769 сут.
Решение: Из третьего обобщенного закона Кеплера, полагая Мю=М1>>М2=МИо, имеем Мю=4П^2*a^3/G*T^2,тогда Мю=1,9*10^27 кг.

Слайд 7

Вывод.

Движение планет и других небесных тел вокруг Солнца под действием силы

Вывод. Движение планет и других небесных тел вокруг Солнца под действием силы
тяготения происходит по трем законам Кеплера. Эти законы позволяют рассчитывать положения планет и определять их массы по движению спутников вокруг них.

Слайд 8

Вопросы:

1.Перечислите основные элементы эллиптической орбиты планеты.
2.Как связаны периоды обращения планет с их

Вопросы: 1.Перечислите основные элементы эллиптической орбиты планеты. 2.Как связаны периоды обращения планет
средними расстояниями до Солнца?
3.Сформулируйте первый обобщенный закон Кеплера.
4.Сформулируйте второй и третий законы Кеплера.
Имя файла: Законы-движения-планет.pptx
Количество просмотров: 274
Количество скачиваний: 1