Содержание
- 2. 01 02 03 Способы построения индексов. Агрегатные индексы Понятие индексов ВОПРОСЫ 04 05
- 3. Индекс - представляет собой относительную величину, получаемую в результате сопоставления уровней сложных социально-экономических показателей во времени,
- 4. Индексируемая величина величина, изменение которой изучается в данном конкретном случае с помощью индекса
- 5. Способы построения индексов.
- 6. Каждая индексируемая величина имеет свое символическое обозначение: Количество единиц данного вида продукции - q Цена единицы
- 7. Индивидуальные индексы характеризуют изменение только одного элемента совокупности или
- 8. Задача 1.
- 9. Задача 1. Определить: изменение (в %) выпуска каждого вида продукции Производство автомобиля А в отчетном году
- 10. Задача 1. Производство автомобиля С в отчетном году выросло на 2,8% по сравнению с прошлым годом.
- 11. Задача № 1 Определить изменение цен ( в %) по каждому виду продукции Автомобиль модели А
- 12. Задача 1 Автомобиль модели В или 107,0% т.е. цена возросла на 7%
- 13. Задача 1 Автомобиль модели С или 114,0%, т.е. увеличение цены на 14,0%
- 14. Сводный индекс отражает изменение по всей совокупности элементов сложного явления Если индексы охватывают не все элементы
- 15. Индекс стоимости продукции (товарооборота).
- 16. показывает абсолютное изменение общей стоимости продукции за счет изменения количества продукции и цен.
- 17. Задача 1. Определить изменение товарооборота в целом по предприятию. Общая стоимость произведенной продукции увеличилась на 12,3%
- 18. Агрегатные индексы Индексы количественных показателей. Индексы качественных показателей
- 19. Внешняя отличительная особенность агрегатного индекса В числителе и в знаменателе меняется индексируемая величина. Значения другой, являющейся
- 20. Индекс физического объема товарооборота. Если мы хотим узнать как на стоимость проданной продукции повлияло изменение количества
- 21. Индекс Э. Ласпейреса
- 22. эта разность показывает абсолютное изменение общей стоимости продукции за счет изменения количества продукции
- 23. Индекс Г. Пааше
- 24. Сравнение индекса Ласпейреса и индекса Пааше Индекс Ласпейреса: В качестве коэффициента соизмерения используются цены базисного периода
- 25. Задача 1. Определить изменение выпуска продукции в целом по предприятию. Изменение количества произведенных автомобилей привело к
- 26. Индексы качественных показателей: Агрегатный индекс цен Индексируемой величиной в данном случае является цена (р), количество продукции
- 27. Индекс Пааше
- 28. Абсолютное изменение всей стоимости продукции за счет изменения цен.
- 29. Индекс Ласпейреса
- 30. Сравнение индекса цен Пааше и Ласпейреса Индекс Пааше В качестве веса используется количество товара отчетного периода
- 31. Задача1. Определить среднее изменение цен по всему ассортименту продукции. Среднее изменение цен по всему ассортименту продукции
- 32. Цепные и базисные индексы. Произведение цепных индивидуальных индексов равно последнему базисному: Базисный агрегатный индекс может быть
- 33. Задача 4 По фирме имеются следующие данные об объеме производства и стоимости продукции: Расчитать индексы физического
- 34. Задача 4 Расчитаем цепные индексы:
- 35. Задача № 4. Расчитаем базисные индексы
- 36. Произведение цепных индексов равно базисному 1,114*1,119 = 1,2465
- 37. Вывод: на предприятии в 2015 году по сравнению с 2014 годом наблюдается рост производства за счет
- 38. Цепные индивидуальные индексы
- 39. Базисные индивидуальные индексы
- 40. Связь индивидуальных цепных и базисных индексов.
- 41. Расчеты с помощью индексных систем недостающих индесов. или Iр * Iq = Ipq
- 42. Задача № 8. Как изменились цены, если физический объем товарооборота увеличился на 12%, а товарооборот вырос
- 43. Расчет средних арифметических индексов. Агрегатный индекс физического объема имеет вид Если из условия известна стоимость произведенной
- 44. тогда средний арифметический индекс физического объема приобретает вид:
- 45. Средний гармонический индекс цен если в качестве исходных данных имеем и изменение цен, т.е. Тогда заменяя
- 46. Получим средний гармонический индекс цен
- 47. Индексы структурных сдвигов Индекс переменного состава представляет собой соотношение средних уровней изучаемого явления, относящихся к разным
- 48. На изменение признака влияет два фактора: изменения значений осредняемого признака (x) у отдельных единиц совокупности; структурных
- 49. Индекс постоянного (фиксированного) состава отражает изолированное действие первого фактора Индекс постоянного состава может быть рассчитан и
- 50. Индекс структурных сдвигов характеризует влияние изменения структуры изучаемой совокупности на динамику среднего уровня признака:
- 51. Связь индексов переменного, постоянного состава и структурных сдвигов Индексы переменного, постоянного состава и структурных сдвигов увязываются
- 52. Задача
- 53. Необходимо определить: уровни фондоотдачи в отдельных филиалах объединения в отчетном и базисном периодах; средний уровень фондоотдачи
- 54. Фондоотдача обобщающий показатель, характеризующий уровень использования производственных фондов. Отдача основных производственных фондов рассчитывается путем деления объема
- 55. Где f - уровень фондоотдачи Q - объем выпускаемой продукции F - среднегодовая стоимость фондов.
- 56. Вычислим фондоотдачу для каждого филиала в отчетном и базисном периодах
- 57. Средний по объединению уровень фондоотдачи в базисном и отчетном периоде:
- 58. Динамика среднего по объединению уровня фондоотдачи: индекс переменного состава или 93,5%, т.е. фондоотдача снизилась на 6,5%
- 59. Выявим раздельное влияние каждого из факторов: уменьшение фондоотдачи в отдельных филиалах структурные изменения в распределении фондов
- 60. Таким образом, фондоотдача в среднем по филиалам объединения снизилась на 7,3%, что привело к аналогичному снижению
- 61. Проверим увязку индексов в систему
- 62. Задача № 7. Расчитать индексы цен, физического объема товарооборота и товарооборота по трем товарам вместе.
- 63. Задача № 7. Решение:
- 65. Скачать презентацию