Работа и энергия

Содержание

Слайд 2

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 3

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 4

Работа и кинетическая энергия

Рисунок поясняет выражение
Из рисунка видно, что элементарная работа

Работа и кинетическая энергия Рисунок поясняет выражение Из рисунка видно, что элементарная
δА равна площади заштрихованной полоски, а работа А по перемещению из точки 1 в точку 2 – площади, ограниченной кривой, ординатами 1 и 2 и осью абсцисс.
При этом площадь фигуры над осью s берется со знаком плюс (она соответствует положительной работе), а площадь фигуры под осью абсцисс – со знаком минус

Слайд 5

Работа и кинетическая энергия

Единицей работы в системе Си является джоуль (Дж).
Джоуль

Работа и кинетическая энергия Единицей работы в системе Си является джоуль (Дж).
есть работа силы в один ньютон на перемещении в один метр при условии, что направление силы совпадает с направлением перемещения.

Слайд 6

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 7

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 8

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 9

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 10

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 11

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 12

Работа и кинетическая энергия

 

Работа и кинетическая энергия

Слайд 13

Работа и кинетическая энергия

Если точки придут в движение, то каждая из сил

Работа и кинетическая энергия Если точки придут в движение, то каждая из
совершит положительную работу.
Будет положительной и работа обеих сил. Она пойдет на приращение кинетической энергии системы.
Следовательно, приращение кинетической энергии определяется работой не только внешних, но и внутренних сил.

Слайд 14

Консервативные силы. Потенциальная энергия

Если в каждой точке пространства на помещенную туда частицу

Консервативные силы. Потенциальная энергия Если в каждой точке пространства на помещенную туда
действует сила, то говорят, что частица находится в поле сил.
Так, например, частица может находиться в поле
сил тяжести,
в поле упругих сил,
в поле сил сопротивления и т.д.

Слайд 15

Консервативные силы. Потенциальная энергия

Существуют поля, в которых работа, совершаемая над частицей силами

Консервативные силы. Потенциальная энергия Существуют поля, в которых работа, совершаемая над частицей
поля, не зависит от пути, между точками 1 и 2.
Работа по замкнутому пути, естественно, в таких полях равна нулю.
Силы, обладающие такими свойствами, называются консервативными.

Слайд 16

Консервативные силы. Потенциальная энергия

Все силы, не являющиеся консервативными, называют неконсервативными.
К их

Консервативные силы. Потенциальная энергия Все силы, не являющиеся консервативными, называют неконсервативными. К
числу относятся, например, силы трения и сопротивления среды.
Работа этих сил зависти от пути между начальным и конечным положением частицы и не равна нулю на любом замкнутом пути.

Слайд 17

Консервативные силы. Потенциальная энергия

Если на систему частиц действуют только консервативные силы, то

Консервативные силы. Потенциальная энергия Если на систему частиц действуют только консервативные силы,
можно для нее ввести понятие потенциальной энергии. Какое-либо произвольное положение системы условно примем за нулевое.
Работа, совершаемая консервативными силами из рассматриваемого положение в нулевое, называется потенциальной энергией системы
Работа консервативных сил не зависит от пути, поэтому потенциальная энергия системы U зависит только от ее координат.

Слайд 18

Консервативные силы. Потенциальная энергия

 

Консервативные силы. Потенциальная энергия

Слайд 19

Консервативные силы. Потенциальная энергия

 

Консервативные силы. Потенциальная энергия

Слайд 20

Консервативные силы. Потенциальная энергия

 

Консервативные силы. Потенциальная энергия

Слайд 21

Консервативные силы. Потенциальная энергия

Этот произвол не может отразиться на физических выводах, так

Консервативные силы. Потенциальная энергия Этот произвол не может отразиться на физических выводах,
как ход физических явлений зависит не от абсолютных значений самой потенциальной энергии, а лишь от ее разности в различных состояниях.

Слайд 22

Консервативные силы. Потенциальная энергия

Пусть система перешла из положения 1 в положение 2

Консервативные силы. Потенциальная энергия Пусть система перешла из положения 1 в положение
по какому-нибудь пути 12 (рис. б).
Работу А12, совершенную консервативными силами при таком переходе, можно выразить через потенциальные энергии U1 и U2 в состояниях 1 и 2.

Слайд 23

Консервативные силы. Потенциальная энергия

С этой целью вообразим, что переход осуществлен через нулевое

Консервативные силы. Потенциальная энергия С этой целью вообразим, что переход осуществлен через
положение О, т.е. по пути 1О2.
Так как силы консервативны, то А12 = А1О2 = А1О + АО2 =А1О – А2О. По определению
Потенциальной энергии U1 = А1О +С, U2 = А2О +С, где С – одна и та же постоянная

Слайд 24

Консервативные силы. Потенциальная энергия

Таким образом,
А12 = U1 – U2,
т.е. работа консервативных сил

Консервативные силы. Потенциальная энергия Таким образом, А12 = U1 – U2, т.е.
равна убыли потенциальной энергии системы

Слайд 25

Закон сохранения энергии

 

Закон сохранения энергии

Слайд 26

Закон сохранения энергии

Сумма кинетической и потенциальной энергий системы называется ее полной энергией

Закон сохранения энергии Сумма кинетической и потенциальной энергий системы называется ее полной
Е. Таким образом Е1 = Е2, или
Е= К + U = const.
В системе с одними только консервативными силами полная энергия остается постоянной.

Слайд 27

Закон сохранения энергии

Могут происходить только превращения из кинетической энергии в потенциальную и

Закон сохранения энергии Могут происходить только превращения из кинетической энергии в потенциальную
обратно, но полный запас энергии системы измениться не может.
Это положение называется законом сохранения энергии в механике.

Слайд 28

Потенциальная энергия и сила

Вычислим потенциальную энергию в некоторых простейших случаях.
а). Потенциальная энергия

Потенциальная энергия и сила Вычислим потенциальную энергию в некоторых простейших случаях. а).
тела в однородном поле тяжести.
Если материальная точка, находящаяся на высоте h, упадет на нулевой уровень, то сила тяжести совершит работу А = mgh.
Поэтому на высоте h материальная точка обладает потенциальной энергией U = mgh + C.

Слайд 29

Потенциальная энергия и сила

За нулевой можно принять произвольный уровень, например, уровень пола,

Потенциальная энергия и сила За нулевой можно принять произвольный уровень, например, уровень
уровень моря и т.д.
Постоянная С равна потенциальной энергии на нулевом уровне. Полагая ее равной нулю, получим
U = mgh

Слайд 30

Потенциальная энергия и сила

б) Потенциальная энергия растянутой пружины.
Упругие силы, возникающие при

Потенциальная энергия и сила б) Потенциальная энергия растянутой пружины. Упругие силы, возникающие
растяжении или сжатии пружины, консервативны.
Поэтому имеет смысл говорить о потенциальной энергии деформированной пружины.
Ее называют упругой энергией. Обозначим через x растяжение пружины, т.е. разность x = l – l0 длин пружин в деформированном и недеформированном состояниях.

Слайд 31

Потенциальная энергия и сила

 

Потенциальная энергия и сила

Слайд 32

Потенциальная энергия и сила

 

Потенциальная энергия и сила

Слайд 33

Потенциальная энергия и сила

 

Потенциальная энергия и сила

Слайд 34

Потенциальная энергия и сила

 

Потенциальная энергия и сила

Слайд 35

Потенциальная энергия и сила

Как показывают приведенные примеры, зная зависимость сил от координат

Потенциальная энергия и сила Как показывают приведенные примеры, зная зависимость сил от
можно путем интегрирования найти потенциальную энергию частицы.
Можно поставить и обратную задачу: вычислить действующие силы по заданной потенциальной энергии.
Эта задача решается с помощью дифференцирования

Слайд 36

Потенциальная энергия и сила

 

Потенциальная энергия и сила

Слайд 37

Абсолютно неупругий удар

Интересным примером, где имеет место потеря механической энергии под действием

Абсолютно неупругий удар Интересным примером, где имеет место потеря механической энергии под
диссипативных сил, является абсолютно неупругий удар.
Так называется столкновение двух тел, в результате которого они соединяются вместе и движутся дальше как одно целое

Слайд 38

Абсолютно неупругий удар

Скорость образовавшегося в результате столкновения тела можно найти, используя закон

Абсолютно неупругий удар Скорость образовавшегося в результате столкновения тела можно найти, используя
сохранения импульса.
Пусть шары движутся вдоль прямой, соединяющей их центры, со скоростями v1 и v2 .
В этом случае говорят, что удар является центральным. Обозначим через v скорость образовавшегося тела

Слайд 39

Абсолютно неупругий удар

 

Абсолютно неупругий удар

Слайд 40

Абсолютно неупругий удар

 

Абсолютно неупругий удар

Слайд 41

Абсолютно неупругий удар

Таким образом, при столкновении двух абсолютно неупругих шаров происходит потеря

Абсолютно неупругий удар Таким образом, при столкновении двух абсолютно неупругих шаров происходит
кинетической энергии макроскопического движения, равная половине произведения приведенной массы на квадрат относительной скорости.

Слайд 42

Абсолютно неупругий удар

 

Абсолютно неупругий удар

Слайд 43

Абсолютно неупругий удар

 

Абсолютно неупругий удар

Слайд 44

Абсолютно неупругий удар

Разрушительные эффекты при авариях, конечно, являются бедствием.
Но в некоторых

Абсолютно неупругий удар Разрушительные эффекты при авариях, конечно, являются бедствием. Но в
случаях, например при изучении превращений, претерпеваемых атомными ядрами и элементарными частицами во время столкновения, они являются целью исследования.
В таких случаях стремятся к тому, чтобы разрушительные эффекты усилить.

Слайд 45

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 46

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 47

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 48

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 49

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 50

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 51

Абсолютно упругий удар

Получилось всего три уравнения для определения четырех неизвестных (скорости, помеченные

Абсолютно упругий удар Получилось всего три уравнения для определения четырех неизвестных (скорости,
штрихами).
Чтобы написать недостающее уравнение, введем предположение, что при столкновении шаров не возникают тангенциальные силы.
Ввести такое предположение вынуждает нас закон сохранения энергии, уже использованный при написании наших уравнений.

Слайд 52

Абсолютно упругий удар

Если бы при столкновении развивались тангенциальные силы трения скольжения, механическая

Абсолютно упругий удар Если бы при столкновении развивались тангенциальные силы трения скольжения,
энергия не могла бы сохраняться. Поэтому, предполагая удар идеально упругим, мы должны считать сами шары идеально, гладкими.
При их столкновении тангенциальные силы не возникают.

Слайд 53

Абсолютно упругий удар

 

Абсолютно упругий удар

Слайд 54

Абсолютно упругий удар

При столкновении гладких идеально упругих шаров их тангенциальные скорости не

Абсолютно упругий удар При столкновении гладких идеально упругих шаров их тангенциальные скорости
изменяются.
Нормальные же скорости изменяются так же, как и скорости при центральном ударе.
В частности, при столкновениях не изменяются состояния вращения шаров.
Если шары одинаковы, то при столкновении они обмениваются нормальными скоростями, тангенциальные скорости их остаются неизменными.

Слайд 55

Задача

Частица массой m налетает на покоящуюся частицу со скоростью v1 и после

Задача Частица массой m налетает на покоящуюся частицу со скоростью v1 и
абсолютно упругого удара отлетает со скоростью v2 перпендикулярно к направлению своего первоначального движения. Найти массу частицы M.

Слайд 56

Задача

 

Задача

Слайд 57

Задача

 

Задача

Слайд 58

Задача

 

Задача

Слайд 59

Задача

 

Задача

Слайд 60

Задача 2

Задача 2

Слайд 61

Задача 2

Задача 2

Слайд 62

Задача 3

Задача 3

Слайд 63

Задача 3

Задача 3

Слайд 64

Задача 4

Задача 4

Слайд 65

Задача 4

Задача 4
Имя файла: Работа-и-энергия.pptx
Количество просмотров: 40
Количество скачиваний: 0