Реальные связи. Курс лекций по теоретической механике

Слайд 2

■ Трение скольжения. При действии сдвигающей силы, приложенной к телу, покоящемуся на

■ Трение скольжения. При действии сдвигающей силы, приложенной к телу, покоящемуся на
шероховатой поверхности, возникает сила, противодействующая возможному смещению тела (сила трения сцепления) из равновесного положения или его действительному перемещению (сила трения скольжения) при его движении.
Основные законы трения (Амонтона - Кулона):
1. Сила трения лежит в касательной плоскости к соприкасающимся поверхностям и направлена в сторону противоположную направлению, в котором приложенные к телу силы стремятся его сдвинуть или сдвигают в действительности (реактивный характер).
2. Сила трения изменяется от нуля до своего максимального значения Максимальная сила трения пропорциональна коэффициенту трения и силе нормального давления
3. Коэффициент трения есть величина постоянная для данного вида и состояния соприкасающихся поверхностей (f = const).
4. Сила трения в широких пределах не зависит от площади соприкасающихся поверхностей.

■ Способы определения коэффициента трения.
1. Сдвигающая сила изменяется от нуля до своего максимального значения – 0 ≤ T ≤ Tmax, (0 ≤ P ≤ Pmax).

2. Сила нормального давления изменяется от некоторого начального значения до минимального значения – N0 ≥ N ≥ Nmin (G0 ≥ G ≥ Gmin).

3. Сдвигающая сила и сила нормального давления изменяются при изменении угла наклона плоскости скольжения от нуля до максимального
значения – 0 ≥ φ ≥ φmax .

■ Угол трения.
С учетом силы трения, возникающей при контакте с шероховатой поверхностью
полная реакция такой поверхности может рассматриваться как геометрическая
сумма нормальной реакции абсолютно гладкой поверхности и силы трения:

Угол отклонения полной реакции
шероховатой поверхности – угол
трения, равный:

При изменении направления сдвигающей силы T на опорной поверхности ее поворотом относительно нормали к плоскости полная максимальная реакция шероховатой поверхности описывает конус трения.

Активные силы (G, T и др.) можно заменить равнодействующей силой P, имеющей угол отклонения от вертикали α. Можно показать, что равновесие возможно лишь в том случае, когда эта сила остается внутри пространства конуса трения:
Условие равновесия по оси x: Psinα ≤ Fтрmax.
Из уравнения равновесия по оси у: N = Pcosα.
Максимальная сила трения Fтрmax = fN = tgφN = tgφPcosα.
Тогда Psinα ≤ tgφPcosα, откуда tgα ≤ tgφ и α ≤ φ.

Слайд 3

■ Учет сил трения при решении задач на равновесие. При наличии сил

■ Учет сил трения при решении задач на равновесие. При наличии сил
трения:
К действующим на объект активным силам и реакциям абсолютно гладких поверхностей добавляются соответствующие силы трения, направленные по общей касательной к контактным поверхностям в сторону, противоположную возможному смещению точки касания объекта относительно опорной шероховатой плоскости.
К уравнениям равновесия, составленным для объекта, добавляются выражения для максимальных сил трения в количестве, равном числу сил трения.

■ Пример решения задачи на равновесие с учетом трения. Человек весом G собирается установить легкую лестницу под углом α к вертикали (стене) и взобраться на половину длины лестницы для выполнения работы. Коэффициенты трения в точках контакта лестницы с полом (A) и со стеной (B) равны fA и fB соответственно. Определить предельное значение угла наклона, при котором лестница с человеком может сохранять равновесие. Весом лестницы пренебречь.

1. Выбираем на объект (человек и лестница), отбрасываем связи и заменяем их действие реакциями гладкой поверхности.

A

B

2. Добавляем активные силы (силу тяжести G).

3. Добавляем силы трения, направленные в сторону, противоположную возможному перемещению контактных точек A и B
лестницы под действием приложенной активной силы.

4. Составляем
уравнения
равновесия:

5. Добавляем
выражения
для сил трения:

6. Подстановка последних выражений
в уравнения равновесия с простыми
преобразованиями третьего уравнения
дает :

7. Решение первых двух
уравнений дает выражения
для нормальных реакций:

8. Подстановка выражений для нормальных реакций в третье уравнение равновесия приводит к возможности определения предельного угла наклона α:

■ Определение области равновесия. Задача решена для конкретного положения человека,
угол наклона соответствует предельному равновесию (использованы максимальные значения
сил трения). С помощью понятия конуса трения, образовываемого полной реакцией шероховатой
поверхности и теоремы о трех силах можно определить область возможных равновесных
положений человека на лестнице.
Для этого достаточно по заданным коэффициентам трения определить углы трения, определяющие
предельные положения полной реакции и построить конусы трения. Общая область конусов дает
область равновесных положений человека. Хорошо видно, что для более высокого положения
человека надо уменьшать угол наклона.

Имя файла: Реальные-связи.-Курс-лекций-по-теоретической-механике.pptx
Количество просмотров: 43
Количество скачиваний: 0