Презентации, доклады, проекты по физике

Max.Industries. Технология термоядерного реактора
Max.Industries. Технология термоядерного реактора
Дуговой реактор: Несмотря на то, какие классные у Тони игрушки, без источника энергии они останутся только красивыми латами. Нужно подключить маленький дуговой реактор на основе холодного термоядерного синтеза. Технология термоядерного реактора — это основа бизнеса Stark Industries и костюма «айрон мэна». В нашем мире пока нет аналогов этой технологии (хотя разработки ведутся).  предполагаетcz, что технологически комиксоидный реактор уходит корнями в «токамак» — экспериментальный термоядерный реактор времен холодной войны, разработанный еще в СССР. Как и дуговой реактор, «токамак» выполнен в форме тороида, включает плазму, магнитные поля и генерирует огромное количество энергии. Токамак гораздо крупнее, чем дуговой реактор — даже крупнее макета в Stark Industries — и до сих пор не вышел за рамки эксперимента. Но учитывая гениальность Тони в миниатюризации сложных конструкций, скорее всего, основа фантастического термоядерного реактора — именно токамак. Наш Реактор: Max.Industries
Продолжить чтение
Изучение электрохимических свойств нанокристаллов
Изучение электрохимических свойств нанокристаллов
СОДЕРЖАНИЕ   ВВЕДЕНИЕ 1. ОБЩИЕ СВЕДЕНИЯ 2. БИОГРАФИЯ А.И. ЕКИМОВА 3. ОСНОВНЫЕ СВОЙСТВА ННК 4. МЕХАНИЗМ РОСТА «ПАР — ЖИДКОСТЬ — КРИСТАЛЛ» 5. МЕТОДЫ ПЛАНАРНОЙ ТЕХНОЛОГИИ 6. СПОНТАННЫЙ РОСТ 7. МЕТОДЫ СИНТЕЗА И ВЫРАЩИВАНИЯ КРИСТАЛЛОВ «А» «В» 8. ПРИМЕНЕНИЕ 9. СВОЙСТВА II - VI СОЕДИНЕНИЙ ЗАКЛЮЧЕНИЕ СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ ВВЕДЕНИЕ Для современной науки и техники актуальным остается исследование наноматериалов и разработка нанотехнологий, которые уже широко используются в таких областях как физика твердого тела, оптика, полупроводниковая электроника, вычислительная техника и др. Интерес к нанокристаллам широкозонных полупроводников можно объяснить их особыми размерами, формой, которые во многом определяют их особенные свойства. Наиболее интересными являются электронные, механические, оптические и химические характеристики, которые открывают перспективу для будущих применений. Развитие ИК оптики, полупроводниковой электроники, технологий полупроводникового приборостроения влечет необходимость создания новых материалов, в частности, на основе халькогенидов металлов, в которых широкий диапазон прозрачности сочетается c высокими термомеханическими и физико-химическими параметрами. Традиционно в этих областях применяются кристаллические материалы, не всегда удовлетворяющие заданным параметрами, изготовление которых требует достаточно больших затрат и выполнения сложных технологических операций. C развитием нанотехнологий открываются новые возможности получения и использования объемных материалов на основе нанокристаллов II-VI, которые по ряду характеристик не уступают монокристаллам этих соединений.
Продолжить чтение
Ультрафиолетовое излучение. Нормирование , воздействие на человека
Ультрафиолетовое излучение. Нормирование , воздействие на человека
Ультрафиолетовое излучение Ультрафиолетовое излучение (УФИ) - электромагнитное излучение оптического диапазона, которое условно подразделяется на коротковолновое (УФИ С - с длиной волны 200-280 нм), средневолновое (УФИ В - с длиной волны 280-320 нм) и длинноволновое (УФИ А - с длиной волны 320-400 нм). УФИ генерируют как естественные, так и искусственные источники. Основной естественный источник УФИ - Солнце. До поверхности Земли доходит УФИ в диапазоне 280-400 нм, так как более короткие волны поглощаются в верхних слоях стратосферы. Искусственные источники УФИ широко применяются в промышленности, медицине и др. Фактически любой материал, нагретый до температуры, превышающей 2500 еК, генерирует УФИ. Источниками УФИ является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками. Подтипы излучения Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделён на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения: Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции. Но при относительно высоких яркостях, например, от диодов, глаз замечает фиолетовый свет, если излучение захватывает границу видимого света 400 нм.
Продолжить чтение